

Robotic

Enterprise

Framework

Contents

Overview .. 4

Transaction Processing .. 5

Main Features ... 5

Settings ... 5

Logging ... 9

Exception Handling and Recovery... 11

Architecture .. 12

States .. 12

Shared Variables .. 14

Workflows ... 16

Framework\InitAllSettings.xaml ... 16

Framework\KillAllProcesses.xaml ... 17

Framework\InitAllApplications.xaml .. 18

Framework\GetTransactionData.xaml .. 18

Process.xaml .. 20

Framework\SetTransactionStatus.xaml ... 21

Framework\RetryCurrentTransaction.xaml .. 23

Framework\TakeScreenshot.xaml ... 24

Framework\CloseAllApplications.xaml ... 24

Using the Framework ... 24

Changes to Framework Files ... 25

Data\Config.xlsx ... 25

Main.xaml ... 26

Framework\GetTransactionData.xaml .. 26

Process.xaml .. 29

Framework\SetTransactionStatus.xaml ... 29

Practical Example 1: Using Queues ... 30

Practical Example 2: Using Tabular Data ... 32

Test Framework .. 36

Configuration ... 36

Usage Example ... 37

Distribution and Support to Extensions .. 41

Overview

A well-organized project can directly impact the success of an RPA initiative. Besides

choosing processes favorable to automation (i.e., mature processes with well-defined

steps and low exception rate) and creating clear documentation (i.e., Solution Design

Document and Process Definition Document), the quality of the implementation itself

plays a major role for a positive outcome.

Although different RPA implementations can have their own unique traits, a common

set of practices can be usually seen in successful projects. Among those, flexible

configuration, robust exception handling and meaningful logging make projects easier

to implement, understand and maintain. In addition, in the case of large

implementations, scalability also becomes an important factor due to the volume of

data processed.

The Robotic Enterprise Framework, REFramework, is a UiPath Studio template with

features that cover these essential practices and can be used as the starting point for

most RPA projects, especially the ones that require scalable processing. Although the

REFramework can be adapted to any process, its advantages are especially evident

when the framework is used to implement transactional processes. Since transaction

items are independent from each other, it is possible to handle exceptions and manage

logging at transaction level, offering more detailed information about each processed

item and making it easier to retry or eventually skip failed transactions.

This guide describes the framework in detail with realistic use cases and practical

examples. First, section Transaction Processing introduces different types of processes

and explains how they related to the REFramework. After that, an overview of the main

aspects of the framework is offered in section Main Features. Next, the workflows that

compose the framework are detailed in section Architecture. Section Using the

Framework clarifies how to use the framework in practice and includes two step-by-

step examples. Following, section Test Framework outlines how to use the unit testing

capabilities of the framework. The last section, Distribution and Support to Extensions,

specifies the framework’s license and policies related to distribution and support.

Transaction Processing

Although business processes can have different characteristics, it is usually possible to

classify them based on how they repeat certain steps when processing data.

For example, consider a business process that extracts certain data from a PDF file

specified by a user and inputs that data into a web system. In this scenario, to extract

data from a different PDF file, the user must execute the process again and pass the

new file as input.

However, if a user specifies a batch of PDF files instead of just one, the same processing

steps are repeated for each of the files in the batch. In this case, if each of the PDF files

can be processed independent of each other, then it is possible to say that each file is

a transaction within the whole process. In other words, a transaction represents a

single unit of work that can be independently processed.

Although the kind of transaction depends on the process, it is important to clearly

identify transactions within the process to be automated. The REFramework natively

considers the processing of transactions and performs the same steps defined in the

Process Transaction state on each transaction. The States section gives more details

about specifying a source of transactions and how each one is processed.

Main Features

Other than naturally enabling transactional processing, the REFramework also has

other features that are helpful in the implementation of stable and scalable

automation projects: settings, logging and exception handling.

Settings

To make it easier to maintain a project and quickly change configuration values, it is a

good practice to keep them separated from the workflows themselves. In such cases,

a configuration file can be used to define parameters that are used throughout the

project and to avoid values hardcoded in workflows.

The REFramework offers a configuration file, named Config.xlsx and located in the

folder Data, which can be used to define project configuration parameters.

Table 1 - Examples of constants.

Name Value Description

Department Accounting Default name for department.

Bank Code ABC123 Code of the bank to be used for payments.

These parameters are then read into the Config dictionary variable of the Main.xaml

file. This dictionary is also passed as arguments to other files of the framework.

For easier manipulation, this configuration file is an Excel workbook which has three

sheets:

• Settings: Configuration values to be used throughout the project and that

usually depend on the environment being used. For example, names of queues,

folder paths or URLs for web systems.

• Constants: Values that are supposed to be the same across all deployments of

the workflow. For example, department name or bank name to be input in a

certain screen.

• Assets: Values defined as assets in Orchestrator.

Rows in the Settings and the Constants sheets indicate keys and values that are read

into the Config dictionary during the initialization phase of the framework. The Name

column specifies a key in Config and the Value column defines the value associated

with that key. The Description column offers an explanation about the row, but it is not

included in the dictionary. Table 1 provides an example of how to define constants in

the Constants sheet.

For instance, if a process needs to define a constant for a department name, then that

can be added to the Constants sheet: the name is Department, the value is Accounting

and the explanation is Default name for department. Then, during the implementation

of workflows, developers can use Config(“Department”) to retrieve the value

Accounting. Figure 1 illustrates this relationship between the configuration file

Config.xlsx and the Config dictionary.

Config.xlsx Configuration File

Name Value Description

Department Accounting Default name for department.

BankName Bank ABC Default name for bank.

Config Dictionary

Key Value Usage

Department Accounting Config(“Department”).ToString

BankName Bank ABC Config(“BankName”).ToString

Figure 1 - Correspondence Between Config.xlsx and Config Dictionary.

There are many constants defined by default and the Description column details their

purpose. Among those, one particularly important is MaxRetryNumber, which

specifies how many times a robot attempts to retry processing a transaction that failed

with a system exception (section Exception Handling and Recovery offers details about

exceptions).

If an Orchestrator queue is being used as a source of transactions, then the value of

MaxRetryNumber should be zero, indicating that the retrying management is done by

Orchestrator. If queues are not used, the value of MaxRetryNumber should be changed

to an integer that represents the desired number of retries.

The Assets sheet behaves differently than the other two, since the Name column

establishes the key to be included in the Config dictionary, and the Value column

determines the name of the asset as defined in Orchestrator.

Figure 2 shows the relationship between assets defined in Orchestrator, their

definition in the Assets sheet of the Config.xlsx file and their usage in workflows by

means of the Config dictionary.

Orchestrator Asset

Asset Name Type Text Description

CountryName Text Romania Default name for country.

Assets Sheet in Config.xlsx Configuration File

Name Asset Description

CountryAsset CountryName Default name for country.

Config Dictionary

Key Value Usage

CountryAsset Romania Config(“CountryAsset”).ToString

Figure 2 - Relationship Between Orchestrator Assets, Config.xlsx and Config Dictionary.

For example, if there is an asset in Orchestrator called CountryName, there can be a

row in the Assets sheet whose Name is CountryAsset and whose Value is CountryName.

During the initialization phase, the framework retrieves the contents of the

CountryName asset and inserts it as a value corresponding to the key CountryAsset in

the Config dictionary.

The above example uses different names for the asset name in Orchestrator

(CountryName) and the corresponding dictionary key (CountryAsset), but it is

common to use the same name for both. By doing so, it becomes easier to maintain

the configuration file and to reduce naming mistakes during development.

Although the Assets sheet can be used for most types of assets, it cannot be used for

assets of the type credential, since credentials have two values: username and

password. To use credential assets defined in Orchestrator, include them in the

Settings sheet instead (Figure 3): the Name column defines the key in the Config

dictionary, the Value column determines the name of the credential asset and the

Description column provides an explanation about the credential. During

implementation of workflows, use the Get Credential activity to retrieve the credential

from Orchestrator.

Orchestrator Credential Asset

Asset Name Type Username Password Description

System1Credential Credential UserABC Pass123 Credential to

access System1.

Settings Sheet in Config.xlsx Configuration File

Name Value Description

System1Credential System1Credential Credential for ACME System 1.

Config Dictionary

Key Value Usage

System1Credential System1Credential Config(“System1Credential”).ToString

Figure 3 - Relationship Between Orchestrator Credential Assets, Config.xlsx and Config Dictionary.

As a final note about Config.xlsx, since the configuration file is not encrypted, it should

not be used to directly store credentials. Instead, it is safer to use Orchestrator assets

or Windows Credential Manager to save sensitive data.

Logging

The proper use of logging in an automation project has several benefits, such as better

visibility of actions and events, easier debugging and more meaningful auditing.

The REFramework has a comprehensive logging structure that uses different levels of

the Log Message activity to output statuses of transactions, exceptions and transitions

between states. Most of the used log messages have static parts that are configured in

the Constants sheet of the Config.xlsx file.

Other than the regular log fields included in messages generated by robots (e.g., robot

name and timestamp), the REFramework uses additional custom log fields to add

more data about each transaction. When retrieving a new transaction to be processed,

in the file GetTransactionData.xaml, it is possible to define values for the custom log

fields TransactionId, TransactionField1 and TransactionField2.

Figure 4 - Addition and Removal of Custom Log Fields.

Figure 4 shows part of the SetTransactionStatus.xaml file, which adds custom fields to

log messages using the Add Log Fields activity. Note that, after the Log Message

activity is used, the added fields are removed by the Remove Log Fields activity. This

guarantees that the additional fields about a single transaction are output only once,

thus avoiding duplications that could affect aggregations done using such data.

Although the use of custom log fields is optional, they can be used to include extra

information about transactions, which might be helpful during debugging and

troubleshooting.

Additionally, these custom log fields can be leveraged for business reporting purposes.

For example, in a process which considers invoices as transactions, the invoice number

can be assigned to the TransactionId field, the invoice date to TransactionField1 and

the total amount to TransactionField2. By using logs generated with such data, it is

possible to construct visualizations displaying the days in a month in which a large

number of invoices were processed or showing the aggregated total amount

processed during a certain period of time (Figure 5).

Figure 5 - Example of Reporting Using Custom Log Fields.

Note that sensitive data should not be included in logs, since they are not encrypted

and might lead to privacy issues if leaked.

Exception Handling and Recovery

The REFramework offers a robust exception handling scheme and can automatically

recover from failures, update statuses of transactions and gracefully end the execution

in case of unrecoverable exceptions. This feature is closely related to the logging

capabilities, so that all information about exceptions is properly logged and available

for analysis and investigation.

Exceptions that happen during the framework’s execution are divided in two

categories:

• Business Exceptions: This kind of exception is implemented by the class

BusinessRuleException and it should be thrown when there are problems

related to rules of the business process being automated. For example, if a

process expects to receive an email with an attachment, but the attachment

does not exist, the process would not be able to continue. In this case, a

developer can use the Throw activity to throw a BusinessRuleException, which

indicates that there was a problem that prevented the rules of the process to

be followed. Note that BusinessRuleExceptions must be explicitly thrown by

the developer of the workflow, and they are not automatically thrown by the

framework or activities.

• System Exceptions: If an exception is not related to rules of the process itself, it

is considered a system exception. Examples of system exceptions include an

activity that timed-out due to slow network connection or a selector not found

because of a browser crash.

Depending on the category of exception, business exception or system exception, the

REFramework decides whether the transaction should be retried. In the case of

business exceptions, the transaction is not automatically retried, since issues related

to business rules usually require human intervention. On the other hand, in the case

of system exceptions, the error might have been caused by a temporary problem and

retrying the same transaction can make it succeed without human intervention.

Note that both business exceptions and system exceptions are concepts that also exist

in Orchestrator under the names Business Exceptions and Application Exceptions. In

fact, if the source of transactions is an Orchestrator queue, then the number of retries

in the case of system exceptions can be set directly on Orchestrator. If Orchestrator is

not used, the configuration for retries is done in the Config.xlsx file, as mentioned in

section Settings.

Architecture

The REFramework is implemented as a state machine workflow, which is a kind of

workflow that defines states that represent a particular circumstance of the execution.

Depending on certain conditions, the execution can transition from one state to

another to represent the steps of a process.

States

The states of the REFramework can be seen in Figure 6, and they are detailed as

follows:

• Initialization: Read configuration file and initialize applications used in the

process. If the initialization is successful, the execution moves to the Get

Transaction Data state; in case of failure, it moves to the End Process state. If a

system exception occurs during the processing of a transaction, the framework

attempts to recover from the error by closing all applications used and

returning to the Initialization state so the applications can be initialized again.

• Get Transaction Data: Get the next transaction to be processed. If there are no

data to be processed or any errors occur, the execution goes to the End Process

state. If a new transaction is successfully retrieved, it is processed in the Process

Transaction state.

• Process Transaction: Process a single transaction. The result of the processing

can be Success, Business Exception or System Exception. In the case of System

Exception, the processing of the current transaction can be automatically

retried. If the result is Business Exception, the transaction is skipped, and the

framework tries to retrieve a new transaction in the Get Transaction Data state.

The execution also returns to the Get Transaction Data state to retrieve a new

transaction if the processing of the current one is successful.

• End Process: Finalize the process and close all applications used.

Figure 6 - State Machine with the States of the REFramework.

Table 2 - Workflows Invoked in States.

State Invoked Workflows

Initialization InitAllSettings.xaml

KillAllProcesses.xaml

InitAllApplications.xaml

Get Transaction Data GetTransactionData.xaml

Process Transaction Process.xaml

SetTransactionStatus.xaml

• RetryCurrentTransaction.xaml

• TakeScreenshot.xaml

• CloseAllApplications.xaml

• KillAllProcesses.xaml

End Process CloseAllApplications.xaml

KillAllProcesses.xaml

Each state invokes one or more workflows, which are listed in Table 2 and detailed in

the section Workflows.

Shared Variables

Table 3 shows the variables declared in the Main.xaml file and which are passed as

arguments to workflows invoked in different states.

One important variable that is passed to almost all workflows invoked in Main.xaml is

the Config dictionary. This variable is initialized by the InitAllSettings.xaml workflow

in the Initialization state, and it contains all the configuration declared in the

Config.xlsx file. Since it is a dictionary, the values in Config can be accessed by its keys,

like Config(“Department”) or Config(“System1_URL”). Note that, although it is present

in the Config.xlsx file, the Description of each value is not included in the dictionary.

Table 3 - Shared Variables.

Name Default Type Description

TransactionItem QueueItem Transaction item to be processed.

The type of this variable can be

changed to match the transaction

type in the process. For example,

when processing data from a

spreadsheet that is read into a

DataTable, this type can be changed

to DataRow (refer to section

Practical Example 2: Using Tabular

Data for a sample). In another

scenario, if transactions are paths

to image files to be processed, this

variable’s type can be changed to

String.

SystemException Exception Used during transitions between

states to represent exceptions other

than BusinessRuleException.

BusinessException BusinessRuleException Used during transitions between

states and represents a situation

that does not conform to the rules

of the process being automated.

TransactionNumber Int32 Sequential counter of transaction

items.

Config Dictionary(Of String,

Object)

Dictionary structure to store

configuration data of the process

(settings, constants and assets).

RetryNumber Int32 Used to control the number of

attempts of retrying the transaction

processes in case of system

exceptions.

TransactionField1 String Optionally used to include

additional information about the

transaction item.

TransactionField2 String Optionally used to include

additional information about the

transaction item.

TransactionID String Used for information and logging

purposes. Ideally, the ID should be

unique for each transaction.

TransactionData DataTable Used in case transactions are stored

in a DataTable, for example, after

being retrieved from a spreadsheet.

Workflows

This section details the workflows that compose the REFramework, including overview,

purpose and arguments. When applicable, it is also mentioned what parts need to be

modified if the transaction type is not QueueItem.

Framework\InitAllSettings.xaml

This workflow, located in the Framework folder, initializes, populates and outputs a

configuration dictionary, Config, to be used throughout the project. Settings and

constants are read from the local configuration file, Data\Config.xlsx, and assets are

fetched from Orchestrator. Asset values overwrite settings and constant values if they

are defined with the same name. Table 4 shows the arguments used by

InitAllSettings.xaml.

Table 4 - Arguments of InitAllSettings.xaml.

Argument Description Default Value

in_ConfigFile Path to the configuration file that

defines settings, constants and

assets.

“Data\Config.xlsx”

in_ConfigSheets Names of the sheets corresponding

to settings and constants in the

configuration file.

{"Settings","Constants"}

out_Config Dictionary structure to store

configuration data of the process

(settings, constants and assets).

No default value

If an exception occurs during the execution of this workflow - for example, if the

configuration file is not found, it is caught by the Try Catch activity in the Initialization

state and the execution transitions into the End Process state.

Framework\KillAllProcesses.xaml

After the initialization of settings, the framework can perform actions to make sure that

the system is in a clean state before the main process starts. This can be done by using

the Kill Process activity, which forces the termination of a Windows process

representing an application used in the business process. Note that killing processes

might have undesirable outcomes, such as losing unsaved changes to files. The

KillAllProcesses.xaml workflow, located in the Framework folder, can be used to

implement such cleanup steps.

Also, despite the name of this workflow, it is not mandatory to always kill all the

processes used, and other steps might be more appropriate to return the system to a

clean state. Ultimately, such steps depend on the requirements of the business process.

Table 5 - Argument of InitAllApplications.xaml.

Argument Description Default Value

in_Config Dictionary structure to store

configuration data of the process

(settings, constants and assets).

No default value

Framework\InitAllApplications.xaml

The InitAllApplications.xaml workflow, located in the Framework folder, can be used

to initialize applications operated during the execution of the process. It can contain

activities like Open Application activities and Open Browser, or it can also invoke other

workflows that implement actions like login and authentication.

Table 5 shows that this workflow receives only one argument, the configuration

dictionary, Config, which can contain data necessary to start certain applications (e.g.,

URL of a web application).

Framework\GetTransactionData.xaml

This workflow, located in the Framework folder, attempts to retrieve a transaction item

from a specified source (e.g., Orchestrator queues, spreadsheets, databases,

mailboxes or web APIs).

If there are no transaction items remaining to be processed, the argument

out_TransactionItem is set to Nothing, which leads to the End Process state. All

arguments used are detailed in Table 6.

For cases in which there is only a single transaction (i.e., a linear process), the

developer should add an If activity to check whether the argument

in_TransactionNumber has the value 1 (meaning it is the first and only transaction)

and assign the transaction item to out_TransactionItem. In such cases, for any other

value of in_TransactionNumber, out_TransactionItem should be set to Nothing (Figure

7).

Table 6 - Arguments of GetTransactionData.xaml

Argument Description Default Value

in_TransactionNumber Sequential counter of transaction

items.

No default value

in_Config Dictionary structure to store

configuration data of the process

(settings, constants and assets).

No default value

out_TransactionItem Transaction item to be processed. No default value

out_TransactionField1 Optionally used to include

additional information about the

transaction item.

No default value

out_TransactionField2 Optionally used to include

additional information about the

transaction item.

No default value

out_TransactionID Used for information and logging

purposes. Ideally, the ID should be

unique for each transaction.

No default value

io_TransactionData Used in case transactions are stored

in a DataTable, for example, after

being retrieved from a spreadsheet.

No default value

Figure 7 - Configuration of GetTransactionData.xaml in Case of Linear Processes.

Table 7 - Arguments of Process.xaml

Argument Description Default Value

in_TransactionItem Transaction item to be processed. No default value

in_Config Dictionary structure to store configuration

data of the process (settings, constants and

assets).

No default value

If there are multiple transactions from a source other than an Orchestrator queue, use

the argument in_TransactionNumber as an index to retrieve the correct transaction to

be processed. If there are no more transactions left, it is necessary to set

out_TransactionItem to Nothing, thus leading to the end of the process.

The GetTransactionData.xaml workflow assumes the use of Orchestrator queues by

default, and the first activity tries to retrieve a new transaction item from an

Orchestrator queue. This situation is illustrated by the example in section Practical

Example 1: Using Queues.

If Orchestrator queues are not used, replace the Get Transaction Item activity with the

appropriated logic to retrieve transaction items. For example, if transactions are rows

from a DataTable, the row corresponding to the current transaction is retrieved at this

point. Section Practical Example 2: Using Tabular Data offers an example of this case.

Lastly, note that this workflow contains an optional step that can be used to include

more information about a transaction item, and it is used mainly for logging and

visualization purposes. For example, if the transaction items for a given process are

invoices, then out_TransactionID can be the invoice number, out_TransactionField1

can be the invoice date and out_TransactionField2 can be the invoice amount. Section

Logging offers more information about logging with custom log fields.

Process.xaml

The Process.xaml workflow is used to invoke major steps of the business process,

which are commonly implemented by multiple subworkflows. Its main argument is

in_TransactionItem, which represents the piece of data to be processed. The default

type for the argument in_TransactionItem is QueueItem (Table 7), and it should be

changed in case other types are used (e.g., DataRow, String or MailMessage).

If a BusinessRuleException is thrown during the processing, the current transaction is

skipped. If another kind of exception occurs, the current transaction is retried

according to the retry configurations.

Framework\SetTransactionStatus.xaml

The SetTransactionStatus.xaml workflow, located in the Framework folder, sets and

logs each transaction's status. There can be three possible statuses: Success, Business

Exception and System Exception.

A business exception, represented by a BusinessRuleException object, characterizes

an irregular situation according to the process's rules and prevents the transaction

from being processed. The transaction is not retried in this case, since the result would

be the same until the problem that caused the exception has been solved. For example,

it can be considered a business exception if a process expects to read an email's

attachment, but the sender did not attach any file. In this case, immediate retries of

the transaction would not give a different result.

On the other hand, system exceptions are characterized by exceptions whose types are

different than BusinessRuleException. When this kind of exception happens, the

transaction item can be retried after closing and reopening the applications involved

in the process. The idea behind this behavior is that the exception was caused by a

problem in the applications being automated (e.g., a system that freezes), which might

be solved by restarting them.

If an Orchestrator queue is the source of transactions, the Set Transaction Status

activity is used to update their status. In addition, the retry mechanism is also

managed by Orchestrator.

If Orchestrator queues are not used, the status can be set, for example, by writing to a

specific column in a spreadsheet. In such cases, the retry mechanism is managed by

the framework itself and the number of retries is defined in the configuration file.

At the end of the SetTransactionStatus.xaml workflow, io_TransactionNumber is

incremented, which makes the framework get the next transaction to be processed.

Table 8 provides details about other arguments of SetTransactionStatus.xaml.

Table 8 - Arguments of SetTransactionStatus.xaml

Argument Description Default Value

in_Config Dictionary structure to store

configuration data.

No default value

in_SystemException Exception variable that is used during

transitions between states.

No default value

in_BusinessException Exception variable that is used during

transitions between states.

No default value

in_TransactionItem Transaction item to be processed. No default value

io_RetryNumber This variable controls the number of

attempts of retrying the process in

case of system error.

No default value

io_TransactionNumber Sequential counter of transaction

items.

No default value

in_TransactionField1 Allow the optional addition of

information about the transaction

item.

No default value

in_TransactionField2 Allow the optional addition of

information about the transaction

item.

No default value

in_TransactionID Transaction ID used for information

and logging purposes.

No default value

Table 9 - Arguments of RetryCurrentTransaction.xaml

Argument Description Default Value

in_Config Dictionary structure to store

configuration data of the process

(settings, constants and assets).

No default value

io_RetryNumber Used to control the number of attempts

of retrying the transaction processing

in case of system exceptions.

No default value

io_TransactionNumber Sequential counter of transaction

items.

No default value

in_SystemException Used during transitions between states

to represent exceptions other than

business exceptions.

No default value

in_QueryRetry Used to indicate whether the retry

procedure is managed by an

Orchestrator queue.

No default value

Framework\RetryCurrentTransaction.xaml

Table 9 provides details about the arguments of RetryCurrentTransaction.xaml,

located in the Framework folder. This workflow manages the retrying mechanism for

the framework, and it is invoked in SetTransactionStatus.xaml when a system

exception occurs.

The retrying method is based on the configurations defined in Config.xlsx. As

mentioned in section Settings, if the MaxRetryNumber constant has the value zero, the

management of retries is handled by Orchestrator. If MaxRetryNumber has a value

greater than zero, the management of retries is handled locally by the framework.

Table 10 - Arguments of TakeScreenshot.xaml

Argument Description Default Value

in_Folder Path to the folder where the screenshot

should be saved.

No default value

io_FilePath Optional argument that specifies the

path and the name of the screenshot to

be taken.

No default value

Framework\TakeScreenshot.xaml

This workflow, located in the Framework folder, captures a screenshot of the whole

screen and saves it with the PNG extension in a folder specified by the argument

in_Folder (Table 10).

TakeScreenshot.xaml is invoked when there are exceptions during the processing of a

transaction. Although it is used for all processes by default, this feature is particularly

helpful when debugging issues that happen during the execution of unattended

processes, providing clues even when there is no human supervising the robot and

seeing the problem happen live.

Framework\CloseAllApplications.xaml

This workflow, located in the Framework folder, does the necessary procedures for

ending the process and close the used applications. Similar to

OpenAllApplications.xaml, activities can be placed directly in this workflow or,

preferably, subworkflows can be invoked to perform more complex steps, such as

logging out of a system.

Using the Framework

The REFramework is available as a UiPath Studio project template (Figure 8), and

projects created using that template automatically include all the files that compose

the framework.

Figure 8 - Template Menu in UiPath Studio's Home Screen.

Changes to Framework Files

After the project is created, the following files need to be modified according to the

requirements of the process to be automated.

Data\Config.xlsx

Other than adding the necessary settings, constants and assets that depend on the

process, make the following modifications:

1. Change the value of the logF_BusinessProcessName setting to match the name

of the process. This value is used for logging purposes and it is included in all

log messages generated by the framework when this process is executed.

2. If the source of transactions is an Orchestrator queue, change the value of the

OrchestratorQueueName setting to match the name of the queue as defined in

Orchestrator. If the process does not use a queue, then it is safe to delete this

row and change the value of MaxRetryNumber in the Constants sheet to an

integer greater than zero. This indicates the number of times a robot should

retry a transaction that fails with a system exception (refer to section Settings

for details).

Figure 9 - Updating Arguments of Invoked Workflows.

Main.xaml

First, set the type of the TransactionItem variable according to the type of the process

transaction. The default type is QueueItem, but it can be changed, for example, to

DataRow in case rows are being read from an Excel file or to MailMessage in case emails

are retrieved from an email account.

If queues are used, there is no need for further modifications. However, if the type is

changed, the following workflows should also be updated, since they expect the

variable TransactionItem to be of type QueueItem: GetTransactionData.xaml,

Process.xaml and SetTransactionStatus.xaml. Section Practical Example 2: Using

Tabular Data provides an example of how to do such updates.

After the above workflows are adjusted, it is also necessary to update the arguments

passed by the corresponding Invoke Workflow File activities: GetTransactionData.xaml

is invoked in the Get Transaction Data state, and both Process.xaml and

SetTransactionStatus.xaml are invoked in the Process Transaction state. Updating

arguments can be done by clicking the Import Arguments button of the Invoke

Workflow File activity and entering the variables that are passed to the adjusted

arguments, as shown in Figure 9.

Framework\GetTransactionData.xaml

If Orchestrator queues are used, the transaction retrieval is handled by the Get

Transaction Item activity included by default, and it is not necessary to make any

modifications to the GetTransactionData.xaml workflow.

Figure 10 - Configuration for Processes with a Single Transaction.

If transactions are of types other than QueueItem, change the type of the

out_TransactionItem argument to match the process’s transaction type (for example,

DataRow or MailMessage). To define a new data source, replace the first activity of this

workflow, Get Transaction Item, with the appropriate data retrieval. For example, use

the Read Range activity to retrieve data from a spreadsheet and save it to the

io_TransactionData argument. After that, make sure that the new type of

out_TransactionItem is reflected in the Invoke Workflow File activity that invokes this

workflow in the Get Transaction Data state of Main.xaml.

Once the data source is defined, it is necessary to include steps to get transaction items.

For cases in which there is only a single transaction, check whether the argument

in_TransactionNumber has the value 1 (meaning it's the first and only transaction) and

assign the transaction item to out_TransactionItem. For any other value of

in_TransactionNumber, out_TransactionItem should be set to Nothing (Figure 10).

If there are multiple transactions, use the argument in_TransactionNumber as an

index to retrieve the correct transaction to be processed. If there are no more

transactions left, it is necessary to set out_TransactionItem to Nothing, thus ending

the process (Figure 11).

Figure 11 - Configuration for Transactional Process (Multiple Transactions).

Figure 12 - Configuration of Custom Log Fields.

Optionally, it is possible to add information about the transaction item using the

Assign activities in the sequence named Add transaction information to log fields at

the end of this workflow. For example, for creating reports about an invoice processing

automation, one might use out_TransactionID to store invoice number,

out_TransactionField1 to store invoice date and out_TransactionField2 to store the

total amount, as mentioned in section Logging and illustrated in Figure 12.

Process.xaml

No special changes need to be done to Process.xaml if Orchestrator queues are used.

Each transaction item is accessible in this workflow via the argument

in_TransactionItem. For instance, in an invoice processing automation project,

in_TransactionItem.SpecificContent("InvoiceNumber") can be used to retrieve the

invoice number and in_TransactionItem.SpecificContent("TotalAmount") may be

used to obtain the total amount.

If Orchestrator queues are not used, set the type of the in_TransactionItem argument

to match the type defined for the variable TransactionItem in Main.xaml. After that,

make sure that the new type of in_TransactionItem is reflected in the Invoke Workflow

File activity that invokes this workflow in the Process Transaction state of Main.xaml.

Framework\SetTransactionStatus.xaml

As mentioned in section Framework\SetTransactionStatus.xaml, this workflow is

called after the Process.xaml workflow is executed, and it sets the status of the

transaction according to the result of the processing step.

If the process’s data source is an Orchestrator queue, the status of the queue item is

updated by the Set Transaction Status activity by default and no further changes are

necessary.

For processes that do not use an Orchestrator queue, in addition to adjusting the type

of the in_TransactionItem argument, the appropriate steps must be implemented to

set the transaction status. After that, make sure that the new type of

in_TransactionItem is reflected on the Invoke Workflow File activity that invokes this

workflow in the Process Transaction state of Main.xaml.

If it is not desirable to track statuses of transactions, then it is possible to keep the type

of the in_TransactionItem argument as it is (i.e., QueueItem) and simply pass the value

Nothing to the corresponding argument of the Invoke Workflow File activity in the

Process Transaction state of Main.xaml, as illustrated by Figure 13.

Figure 13 - Configuring Arguments when Invoking SetTransactionStatus.xaml.

Figure 14 - Details of a Queue Item from the "Invoices" Queue.

Practical Example 1: Using Queues

For the first practical example, consider that an Orchestrator queue named Invoices is

created and populated with data about invoices, such as invoice number, date and

total amount (Figure 14).

Figure 15 - Updated Statuses of Queue Items.

As detailed in section Changes to Framework Files, the processing of invoices can be

implemented by the following steps:

1. In the Settings sheet of the file Data\Config.xlsx, change the value of the

OrchestratorQueueName parameter to Invoices and the value of

logF_BusinessProcessName to InvoiceProcessingSample.

2. In the InitAllApplications.xaml file, invoke workflows that implement opening

and logging into applications used in the process, such as an invoice

registration system.

3. In CloseAllApplications.xaml, invoke workflows that carry out the logging out

and the closing of the used applications. Optionally, use the

KillAllProcesses.xaml file for additional cleanup steps.

4. In Process.xaml, invoke the necessary workflows to implement the actual

invoice processing steps, like accessing the appropriate screens of the

registration system and using activities like Click and Type Into to register each

invoice.

As it can be seen, in case an Orchestrator queue is used as data source, only a few

modifications are necessary to the framework. It automatically communicates with

the queue set in the configuration file, retrieves one transaction item at a time and

updates the status of the item according to the result of the processing (Figure 15).

Figure 16 - Invoice Data in a Spreadsheet.

Figure 17 - Settings sheet in Config.xlsx.

Practical Example 2: Using Tabular Data

The second example uses invoice data stored in an Excel spreadsheet, as shown in

Figure 16. Each row of the spreadsheet contains data about a single invoice, so the data

should be loaded into the TransactionData variable and the type of TransactionItem

should be changed to DataRow. To do so, make the following changes:

1. Similar to the first example, in the Settings sheet of the file Data\Config.xlsx,

change the value of logF_BusinessProcessName to InvoiceProcessingSample.

However, since the data source is not an Orchestrator queue, delete the row

corresponding to OrchestratorQueueName. Add a new setting parameter by

using SampleDataFilepath as the name and, as the value, specify the path for

the input Excel file that has data about invoices to be processed, such as

Data\Input\InvoiceSampleData.xlsx (Figure 17).

Figure 18 - Initializing Data Source (io_TransactionData).

2. In the Constants sheet of the file Data\Config.xlsx, change the value of

MaxRetryNumber to an integer greater than zero. As detailed in section Settings,

this value indicates the number of times the processing should be retried in

case of system exceptions. For this example, change it to 2.

3. In the Process.xaml workflow, change the type of the argument

in_TransactionItem to DataRow instead of QueueItem. Also, invoke the

necessary workflows to implement the actual invoice processing steps, such as

accessing the appropriate screens of the registration system and using

activities like Click and Type Into to register each invoice.

4. In GetTransactionData.xaml, other than changing the type of

out_TransactionItem to DataRow, delete the existing Get Transaction Item

activity, since this example does not use Orchestrator queues. Two checks are

necessary to correctly retrieve transaction items in this case, and they are

implemented as follows:

a. Add an If activity that checks whether the data source was initialized

with the condition io_TransactionData Is Nothing (Figure 18). If it was

not initialized, read the spreadsheet from the designated Excel file by

using the Read Range activity and the path defined in the configuration

file: in_Config(“SampleDataFilepath”).ToString.

b. After that, it is necessary to implement the logic to retrieve one row each

time the GetTransactionData.xaml is executed. To do so, add another If

activity and use the condition io_TransactionData.Rows.Count >=

in_TransactionNumber, which verifies whether there are rows to be

processed. If there are unprocessed rows, use an Assign activity to set

the appropriate row to be the current transaction item:

io_TransactionData.Rows(in_TransactionNumber - 1). Note that the

argument in_TransactionNumber is used to track the row currently

being processed. If there is not any unprocessed row remaining, assign

the Nothing to out_TransactionItem (Figure 11). The assignment of

Nothing is necessary to prevent the framework from attempting to

retrieve new transactions.

5. Make the following modifications to the SetTransactionStatus.xaml file so that

the statuses of transactions are tracked in the Processed column (Figure 16) of

the input spreadsheet. First, change the type of the argument

in_TransactionItem to DataRow instead of QueueItem and implement the

following steps to update the Processed column of the input Excel file with the

result of the processing:

a. In the sequence called Success, delete the If activity named If

TransactionItem is a QueueItem (Success) and add a Write Cell activity

instead. In the properties of this activity, assign “Yes” to the Text

property, in_Config("SampleDataFilepath").ToString to the

WorkbookPath property and "D"+(io_TransactionNumber+1).ToString

to the Cell property (Figure 19). “D” refers to the Processed column and

io_TransactionNumber+1 skips the table header and writes to the

correct row.

Figure 19 - Configuration of Write Cell (Success).

b. Similar to the previous step, in the sequence called Business Exception,

delete the If activity named If TransactionItem is a QueueItem (Business

Exception) and add a Write Cell activity instead. The values of the

properties of this activity are the same as the success case, except that

the property Text should have the value “No (Business Rule Exception)”.

c. Finally, in the sequence called System Exception, delete the If activity

named If TransactionItem is a QueueItem (System Exception) and add a

Write Cell activity instead. Once again, use the same values for the

properties set in case of success, except for the Text property, which

should be set to "No (System Exception).".

6. In Main.xaml, change the type of the variable TransactionItem to DataRow

instead of QueueItem. Notice that this change raises alerts in different parts of

the workflow, indicating that the new type is not compatible with the type of

the arguments previously defined in the Invoke Workflow File activities. Click

the Import Arguments button of the following Invoke Workflow File activities

and set the TransactionItem variable to the corresponding argument:

a. Invoke GetTransactionData workflow in the Get Transaction Data state.

b. Invoke Process workflow in the Process Transaction state (Try block of

Try Catch activity).

c. Invoke SetTransactionStatus workflow in the Process Transaction state

(Finally block of Try Catch activity).

7. In the InitAllApplications.xaml file, invoke workflows that implement opening

and logging into applications used in the process, such as an invoice

registration system.

8. In CloseAllApplications.xaml, invoke workflows that perform the logout and

the closing of the used applications. Optionally, use the KillAllProcesses.xaml

file for additional cleanup steps.

9. In Process.xaml, invoke the necessary workflows to implement the actual

invoice processing steps, like accessing the appropriate screens of the

registration system and using activities like Click and Type Into to register each

invoice.

To summarize, the steps above read data about invoices from an Excel file and use each

row of the file as a transaction. After processing a transaction, the framework updates

the Processed column according to the result of the processing (i.e., success, business

exception and system exception).

Lastly, note that the same steps can be applied for other types of transactions, such as

emails (MailMessage) and paths to files (String).

Test Framework

The REFramework also includes a testing feature that makes it easier to do automatic

testing of workflows. Instead of testing them one by one and checking the results

manually, it is possible to specify the predicted outcome of a workflow (i.e., successful

execution, business exception and system exception) and see whether the actual

results matched the expected results.

Configuration

Although the execution of tests can be automated, one important point is the

preparation of the test themselves.

One way to do that is to use default values for arguments and manually change them

depending on the case to be tested. However, not only it becomes harder to test

different inputs - since they must be changed manually every time, but this approach

can also create problems that are difficult to debug. For instance, if the developer

forgets about these default values and use the Invoke Workflow File activity without

specifying parameters, the workflow runs without exceptions, but it returns incorrect

values based on the default values, not on actual process data.

Another approach is to create auxiliary test workflows that invoke the workflow that

needs to be tested. By doing so, it becomes easier to test different cases, since the

workflow could be invoked in a loop that is used to control different values passed as

arguments.

Figure 20 - System1_Login.xaml.

Usage Example

Based on the second approach described above, suppose there is the need to create

tests for a workflow that performs the login to a web system, ACME System 1

(https://acme-test.uipath.com/). One possible implementation for the workflow that

logs into ACME System 1, called System1_Login.xaml, is illustrated by Figure 20.

https://acme-test.uipath.com/

Figure 21 – System 1 Login Confirmation.

As explained in section Exception Handling and Recovery, it is the developer’s

responsibility to throw BusinessRuleException exceptions to indicate situations that

do not comply with the regular execution of the process.

To do so in this example, create a new flowchart workflow, name it

System1_Login_ConfirmLogin.xaml and add the steps displayed in Figure 21: If the

Dashboard page is not found, then look for an error message dialog. If this dialog exists,

then it indicates that there were problems with the credential passed, and a

BusinessRuleException should be thrown after a Click activity closes the dialog. If the

login failed, but there was not an error message dialog, an Exception is thrown to

indicate a system exception.

Finally, as shown in the bottom of Figure 20, use Invoke Workflow File activity to invoke

System1_Login_ConfirmLogin.xaml in System1_Login.xaml after the Click activity.

Figure 22 - Implementation of System1_Login_Success_Test.xaml.

Once the System1_Login.xaml workflow is created, add the following test workflows:

1. System1_Login_Success_Test.xaml: Successful login and navigation to the

dashboard.

2. System1_Login_IncorrectCredential_Test.xaml: Failed login due to incorrect

email or password, which should throw a BusinessRuleException.

3. System1_Login_SystemFailure_Test.xaml: Failed login due to server or

browser issues.

Next, implement the test workflows by invoking System1_Login.xaml and passing

arguments that generate the desired outcome. System1_Login_Success_Test.xaml

receives correct credentials as argument (Figure 22), but

System1_Login_IncorrectCredential_Test.xaml receives either empty or incorrect

credentials. To test System1_Login_SystemFailure_Test.xaml, it is necessary to

emulate a scenario that could cause a system exception, such as connectivity issues

that delay responses of the web system and cause exceptions like

SelectorNotFoundException.

Figure 23 - List of Tests to be Executed (Tests Sheet of Tests\Tests.xlsx).

Figure 24 - Results of Tests (Results Sheet of Tests\Tests.xlsx).

Once the test workflows are created, it is necessary to add them to the Tests sheet of

Tests\Tests.xlsx (Figure 23), which lists tests to be executed by the framework. Other

than the name of the file that implements a test, the column ExpectedResult needs to

be filled with the expected result of the workflow: Success, BusinessException or

SystemException.

To make sure that tests do not interfere with each other, it is also necessary to return

the system to the same state as before starting each test. In this example, that means

that the browser window opened by the test must be closed. To do so, add an Attach

Browser activity to the CloseAllApplications.xaml workflow and add a Close Tab

activity within it. To set the tab to be closed, indicate the browser window and modify

the selector to <html title='ACME System 1*' />, which makes it work with both the

dashboard screen and the login screen – for cases when the login is not successful.

Lastly, add Framework\CloseAllApplications.xaml after each test listed in the

Tests\Tests.xlsx file.

After that, the defined tests can be automatically executed by running the workflow

RunAllTests.xaml. The results are written to the Results sheet of Tests.xlsx (Figure 24).

In addition, the file TestLog.txt is open, showing the logs of the execution of tests.

An important detail is that the tests are executed according to the order specified in

Tests.xlsx. This is relevant when, for example, it is necessary to test the interaction with

a particular application, but the workflow to open the application (like

InitAllApplications.xaml) is not previously executed. In such situations, the execution

would probably result in a system exception due to a selector not found.

Lastly, note that if there is the need to test the same workflow multiple times, the test

should be listed repeatedly in Tests.xlsx.

Distribution and Support to Extensions

The REFramework is available under the MIT License and distributed as a template in

UiPath Studio or via https://github.com/UiPath/ReFrameWork.

Regarding the adaptation of the framework to particular use cases and transaction

types, it is encouraged that customers and partners understand the steps for

extensions and implement such modifications to better suit their needs. For an

example of extension using spreadsheet data, refer to section Practical Example 2:

Using Tabular Data. Alternatively, templates based on the REFramework can be

downloaded from UiPath Connect (https://connect.uipath.com/).

