
UiPath Automation
Walkthrough

Walkthrough – Generate Yearly Report for Vendor

Walkthrough – Generate Yearly Report for

Vendor
This time, we are using Orchestrator Queues for the processing of the work items, to understand
more about the capabilities of this feature. We will go over an example of how to use multiple robots to
process data, how to prevent them from processing the entire Queue Item list from the beginning
and instead resume the work in case a system error occurs, etc. We will also split the process by
using 2 different processes. One creates the queue of items and is called Dispatcher. The other one
processes the previously created queue items and is called Performer. With this approach, we can load
the transactions using the Dispatcher only once, and then use multiple Performer robots to process
the queue items created by the Dispatcher.

The Dispatcher Process
● Start with the REFramework template.

o The Dispatcher is responsible for uploading the work items to the queue. We should
upload the WIID to the queue to uniquely identify each transaction item.

o Let’s imagine that the next page arrow is not available for WI 4, so we cannot scrape the
data in the table to extract all the work items. Moreover, in case something happens
to the System 1 application while navigating through pages, the Dispatcher will
recover from the error and resume the work. It will also retry failed transactions. We
consider one page in the WorkItems list to be a transaction and the page number to be
the transaction Item.

o The transaction item is a string representing the number of the page which is currently
being processed.

● Edit the Config file for the current process.
o In the Settings sheet, add the InHouse_Process4 value in the QueueName

parameter. The queue will be defined in Orchestrator using the same name.
o In the Settings sheet, add settings for the System1 URL and System1

Credential parameters.
o In the Constants sheet, set the value of MaxRetryNumber to 2.

● Make the following framework changes:
o The TransactionItem variable in the Main file should be of the System.String type. You

should also make sure that the argument types in the GetTransactionData,
Process, and SetTransactionStatus files match the type of TransactionItem.

Walkthrough – Generate Yearly Report for Vendor 1

● We will use only one application in this exercise - ACME System1. Create a folder named
System1 in the solution root folder.

o The following components in Process 5 can be reused.
▪ Copy the System1_Login.xaml, System1_Close.xaml, and

System1_NavigateTo_WorkItems.xaml files to the System1 folder.
▪ Copy the SendEmail.xaml file to the Common folder.

● Open the InitAllApplications file.
o Invoke the System1\System1_Login.xaml file.
o Invoke the System1\System1_NavigateTo_WorkItems.xaml file. To make sure all

the transaction data is retrieved, the WorkItems page should be open in the browser.
o This is what the InitAllAplications project should look like:

● Open the CloseAllApplications file.
o Invoke the System1\System1_Close.xaml file.
o This is what the CloseAllApplications workflow should look like:

 2 Walkthrough – Generate Yearly Report for Vendor

● Open the KillAllProcesses.xaml file in the Framework folder.
o Add a Kill Process activity and rename it “Kill process IE”.
o Set the ProcessName property to “iexplore”.
o This is how the KillAllProcesses.xaml project should look:

● Open the GetTransactionData.xaml project in the Framework folder. It can be found in the
Get Transaction Data state.

 3 Walkthrough – Generate Yearly Report for Vendor

o As always, we should start with an annotation. Add details about the
TransactionNumber: “TransactionNumber represents the page number" - as agreed
before.

o Delete the Get Transaction Item activity as it is not needed, because the Dispatcher
process is used to upload data to the queue.

o Before the Write Transaction info in Logging Fields sequence, add an Attach
Browser activity and attach the WorkItems page.

o Add an Element Exists activity to check if the next page is available. Indicate a page
number and modify the selector to use an attribute related to the page number
(reminder: the in_TransactionNumber argument is the page number for the
Dispatcher).

o In the output parameter, create a Boolean variable called NextPageExists.
o This is what the Element Exists activity should look like.

o Use an If activity to check if there is more transaction data left.
o If the next page exists, set the output argument out_TransactionItem to the value of the

current page, namely in_TransactionNumber.
o If the next page doesn’t exist, set the out_TransactionItem to Nothing.
o This is how the If activity should look:

 4 Walkthrough – Generate Yearly Report for Vendor

● Open the Process.xaml file in the Framework folder. It can be found in the Process
Transaction state.

o Add an Attach Browser activity and indicate the WorkItems page of the System1
ACME application.

o Use a Click activity to select the processing page number using the same dynamic
selector to identify the current page (in_TransactionNumber argument).

o Next, add an On Element Appear activity to check if the processing page was opened.
You can use UiExplorer. The class attribute can be used to identify active or inactive
pages, so it can also be used when creating the dynamic selector. Inside the On
Element Appear activity, scrape the table containing work items. Create a variable
called dt_WorkItems in the Output property to store them.

o This is how the On Element Appear activity should look:

 5 Walkthrough – Generate Yearly Report for Vendor

o The next step is to upload the WIID for all the rows inside the scraped data table that
have the WI4 type and the Open status to the queue. To upload the value to the queue,
use an Add Queue Item activity. In the Properties panel, use the value in the in_Config
dictionary to fill the QueueName field. In the ItemInformation field, create an
argument called WIID. Set the corresponding value for the argument.

o This is what the Add Queue Item activity should look like:

 6Walkthrough – Generate Yearly Report for Vendor

● Open the Main.xaml file.
o Make sure that the arguments for the Process.xaml invoked project are set correctly.

o This is what the arguments should look like:

 7 Walkthrough – Generate Yearly Report for Vendor

● We are done with the process implementation. Next, we need to test the process and
check that the values are uploaded to the queue correctly.

The Performer processes all the transactions loaded by the Dispatcher to the queue. For that reason, the
TransactionItem type needs to be QueueItem.

● Start with the REFramework template.
o The TransactionItem argument should be of the QueueItem type. This is the default

type of TransactionItem in the REFramework.
● Edit the Config file for the current process as follows:

o In the Settings sheet, add the “InHouse_Process4” value in the QueueName parameter.
The queue will be defined in Orchestrator using the same name.

o In the Settings sheet, add settings for the System1 URL and System1
Credential parameters.

o In the Constants sheet, keep the value of MaxRetryNumber at 0, because we are using
queue items in the Performer process and the retry mechanism is handled in
Orchestrator.

● We will use only one application in this exercise: ACME System1. Create a folder named System1
in the solution root folder.

o The following components in the Performer process can be reused.
System1_Close.xaml, ▪ Copy the System1_Login.xaml,

System1_NavigateTo_WorkItems.xaml,
System1_NavigateTo_WIDetails.xaml and
System1_UpdateWorkItem.xaml files to the System1 folder.

▪ Copy the SendEmail.xaml file to the Common folder.
● Open the InitAllApplications file.

o Invoke the System1\System1_Login.xaml file.
 8

The Performer Process

Walkthrough – Generate Yearly Report for Vendor

● Open the CloseAllApplications file.
o Invoke the System1\System1_Close.xaml file.

● Open the KillAllProcesses.xaml project in the Framework folder. Add a Kill Process activity and
rename it Kill process IE.

o Set the ProcessName property to iexplore.
● Open the Process.xaml project in the Framework folder. It can be found in the Process

Transaction state.
o Create a String variable to set the current work item ID(WIID).
o Add an Assign activity and set the variable created above to the value in the queue.

To do that, we can use the SpecificContent method -
in_TransactionItem.SpecificContent("WIID").ToString

o This is what the Assign activity should look like:

o Open the Process.xaml workflow in the Framework folder. Invoke the
System1\System1_NavigateTo_WIDetails.xaml. Import and bind the
argument that should be taken from the queue using the SpecificContent
method, as described earlier.

o This is what the Invoke activity and the WIID argument should look like:

 9 Walkthrough – Generate Yearly Report for Vendor

o Next, create a blank sequence workflow in the System1 folder. We’ll use it to retrieve the
TaxID value from the Work Item Details page. We can name this workflow
System1_ExtractVendorInformation.xaml.

▪ Start with an annotation. The precondition is this: “Work Item Details page is
open”.

▪ Create an out argument of the String type called out_TaxID, which will be used
later in the project.

▪ Add an On Element Appear activity and indicate the Vendor
Information paragraph on the Work Item Details page. Set the
RepeatForever property to False.

▪ Add a Get Text activity in the Do sequence which is part of On Element Appear.
Indicate the aforementioned paragraph to retrieve the text in it.

▪ In the Properties panel of the Get Text activity, create a variable named
VendorInformation in the Output field.

 10 Walkthrough – Generate Yearly Report for Vendor

▪ Next, after the On Element Appear activity, add an Assign activity to set the
value of the out_TaxID argument to the TaxID value, which can be retreived using
the previously created VendorInformation variable.

▪ This is what the Assign activity should look like:

o Open the Process.xaml and create a String variable named TaxID to store the value of
the out argument from the previous created workflow file. Invoke System1
\System1_ExtractVendorInformation.xaml and bind the argument.

o This is what the invoked workflow should look like:

 11 Walkthrough – Generate Yearly Report for Vendor

o Next, create a new workflow to navigate to the Dashboard page. The workflow should
include a Click activity to select the Dashboard page. We can name this workflow
System1_NavigateTo_Dashboard.xaml.

o Invoke the workflow in the Process.xaml file.
o Now that the TaxID value has been retrieved, we need to navigate to the Download

Monthly Report page. To do that, let us create a new blank sequence named
System1_NavigateTo_MonthlyReport.

▪ Add a specific annotation to this sequence. The precondition is that the
Dashboard page be open.

▪ Add an Attach Browser activity and indicate the Dashboard page.
▪ Add 2 Click activities to navigate to Reports, and then to Download Monthly

Report.
▪ In the Properties panel of both activities, select the checkbox in the Simulate

Click field. The Reports menu is displayed only if you hover over the Reports
button. To click on Download Monthly Report, use UiExplorer, pause it for 3
seconds using the F2 key, and make sure the element is displayed on the screen
before indicating the button.

o Downloading existing invoices might cause some issues. However, to prevent any
exceptions, we should make sure that the environment is clean every time the robot
starts. To do that, we can delete the Download Reports folder mentioned in the
Config file, and then recreate it from scratch. Open the Init State in the Main.xaml file.
Add a Sequence named Clean Up after the invoked KillAllProcesses.xaml file. Let us
use two activities: Delete and Create Directory.

o In the Properties panel of the Delete activity, set the Path field to the value in the
Config file. This way, you can always have a new empty Data\Temp

 12 Walkthrough – Generate Yearly Report for Vendor

directory when the robot runs. This is what the Clean Up sequence should look like:

o Next, going back to the Process.xaml file, invoke the

System1\System1_NavigateTo_MonthlyReport.xaml file created above.
o Create a new variable called ReportYear. Use an Assign activity to set its value to the previous

year.
o The next step is to create the yearly report. To do that, we need to create a new blank sequence file

named System1_CreateYearlyReport.xaml.
▪ Start with a relevant annotation. The precondition is that the Monthly Report

Page be open in the ACME System 1 application.

 13 Walkthrough – Generate Yearly Report for Vendor

▪ Create three In arguments, as follows:
● in_TaxID – to be provided from the main file. It stores the TaxID value.
● in_Year – to be provided from the main file. It stores the year for which

the report will be created
● in_ReportsDownloadPath – the folder where the monthly reports will

be downloaded.
▪ Create one Out argument called out_YearlyReportPath to store the path to

the yearly report file created after merging all the monthly reports.
▪ Add a new item in the Config file, in the Settings sheet, to indicate the path of

the folder where the reports are downloaded. Complete the Name field by
typing ReportsDownloadPath, and the Value field, by filling in Data\Temp.

▪ Create a new Data Table variable called dt_YearlyReport. We use it to merge all
the monthly reports. Set its value to new Datatable using an Assign activity.

▪ Next, add a Type Into activity to type the TaxID value in the ACME System 1
application. The Monthly Report page should already be open at this step.

▪ Add a Click activity to select the year. Enable the Simulate Click property,
and then select the target year. This way, the activity can be executed in the
background, even if the drop-down menu is not open and the element is
invisible. Change the aaname attribute in the selector to the in_Year
argument. This is what the Click activity and the selector should look like:

 14 Walkthrough – Generate Yearly Report for Vendor

o Another option is to use a Select activity instead of the Click
activity. In that case, make sure you update the selector to
point to the year, using UiExplorer.

▪ Create an Array of Strings variable called Months. Use an Assign activity to
set its values according to the options in the Month drop-down list. This is
what the Assign activity should look like:

▪ Next, to download the reports for each month, we need to add a For Each
activity to iterate through the Months array, select the specified month from the
drop-down box, and download the report.

▪ Inside the For Each activity, add a Click activity to select the target Month.
Edit the selector similarly to how you edited the selector for the Year dropdown,
by using the dynamic aaname attribute. Alternatively, you can use a Select
activity.

 15 Walkthrough – Generate Yearly Report for Vendor

▪ Next, add a Click activity and indicate the Download button. Select the Simulate
Click property.

▪ Because some reports don’t exist, add an Element Exists activity and indicate
the label of the pop-up window that is shown in this case. Create a Boolean
variable named ReportNotFound in the Output property.

▪ This is what the For Each activity should look like so far:

▪ The next step is to add an If activity to check if the report is not found. Use the
ReportNotFound variable as the Condition. In the Then section, add a Click
activity and set its target to the OK button of the pop-up window, to move on to
the next month.

▪ In the Else section, download the Report using the below activities:
● Add a Click activity and direct it towards the Save as button. Enable

the Simulate Click property.

 16 Walkthrough – Generate Yearly Report for Vendor

● Add an Assign activity. Create a new variable called ReportFilePath and
set its value to the path and the file name of the monthly report that is
downloaded in .csv format.

● Using a Type Into activity, fill in the value of ReportFilePath in the File
Name field of the Save As window. Select the Simulate Type property.

● Add a Click activity and direct it towards the Save button. Enable the
Simulate Click property.

● Read the csv file just downloaded. In the output property create a data
table variable named dt_MonthlyReport.

● Next, using a Merge Data Table activity, append the values of
dt_MonthlyReport to the dt_YearlyReport data table.

● Downloading a monthly report takes a variable amount of time. To check
that the file was fully downloaded before downloading the next month
report, add an On Element Appear activity and indicate the download
pop-up. Update the selector with wildcard for dynamic attribute values.
Enable the Wait Visible property.

● In the Do section of the On Element Appear activity, add a Click to close
the pop-up. Select the Simulate Click property.

● Add a Delete File activity to delete the Monthly Report file before
downloading the next one.

● This is what the Else section should look like:

 17 Walkthrough – Generate Yearly Report for Vendor

 18 Walkthrough – Generate Yearly Report for Vendor

▪ The next activity in the sequence is Assign, which is used to set the value of
the out_YearlyReportPath argument. Make sure the name of the the Yearly
Report Excel file is in accordance in the model in the PDD file, and the path is the
one in the Config file.

▪ Set default values for the In arguments and test the workflow.

● Go back to the Process workflow.
o Invoke the System1\System1_CreateYearlyReport.xaml file created above. Import

and bind the arguments.
o Create a String variable called YearlyReportPath. It is used to get the value of the out_

yearlyReportPath argument in the previous workflow.
o This is what the Invoke and the Arguments should look like:

 19 Walkthrough – Generate Yearly Report for Vendor

o Next, invoke System1\System1_NavigateTo_Dashboard.xaml to navigate back to
the Dashboard page.

o Now, that we have created the Yearly Report file, we need to navigate to the Reports -
Upload Yearly Report page in the ACME System 1 application. To do that we need
to create a new blank sequence named
System1_NavigateTo_UploadYearlyReport.

▪ Start the new workflow by adding an annotation. The precondition is that the
Dashboard page be open.

▪ Add an Attach Browser activity and indicate the Dashboard page.
▪ Add a Click activity to select the Reports button. Enable the

SimulateClick property.
▪ Next, add a new Click activity to select the Upload Yearly Report button.

Use UiExplorer to click this button, as you did in the
System1_NavigateTo_MonthlyReport.xaml workflow. Enable the
SimulateClick property.

▪ This is what the workflow should look like:

● Go back to the Process workflow.
o Invoke the System1\System1_NavigateTo_UploadYearlyReport.xaml file.
o After navigating to the Reports - Upload Yearly Report page, we should upload

the yearly report. To do that, let us create a new blank sequence named
System1_UploadYearlyReport.

 20 Walkthrough – Generate Yearly Report for Vendor

▪ Start the new sequence by adding an annotation. The precondition is that the
Reports - Upload Yearly Report page be open.

▪ The information required to upload the yearly report file consists of the taxID, the
file path, and the year. When the upload is performed, a confirmation ID is
generated. So, in this workflow, we must use 3 String In arguments: in_TaxID,
in_ReportPath, in_Year, and one String out argument: out_UploadID.

▪ Now, that everything is set up, add a Type Into activity and indicate the Vendor
TaxID field. Use the in_TaxID argument as text.

▪ Use a Click activity on the Year drop-down menu. Update the selector using the
in_Year argument.

▪ Use the Click activity on the Select Report File button.
▪ This is what the sequence should look like so far:

 21 Walkthrough – Generate Yearly Report for Vendor

▪ Now, the Choose file to Upload window is displayed, so we need to use a
Type Into activity to set the path to the yearly report
file(in_ReportPath) and hit Enter.

▪ Select the Upload button using a Click activity.
▪ A pop-up window with the upload confirmation ID is displayed, so let’s use a Get

Text activity to retrieve its value. In the Output property, create a variable
named UploadConfirmation.

▪ Set the value of the out_UploadID argument to the one of the
confirmation ID using an Assign activity. Use the Substring method to retrieve
the value, as follows: UploadConfirmation.Substring("Report was uploaded -
confirmation id is ".Length)

▪ Use a Click activity on the OK button. Now we are done!

 22 Walkthrough – Generate Yearly Report for Vendor

▪ This is what the last part of the workflow should look like:

● Go back to the Process workflow.
o Invoke the System1\System1_UploadYearlyReport.xaml file and bind the

corresponding arguments. Create a variable in the Process workflow to store the value of
the out_UploadID argument. Name the variable UploadID.

o This is what the invoke should look like:

 23 Walkthrough – Generate Yearly Report for Vendor

o At this point, we have uploaded the yearly report file, so we should update the status of the
Work Items.

o Invoke the System1\System1_NavigateTo_Dashboard.xaml file to navigate to
Dashboard Page.

o Invoke the System1\System1_NavigateTo_WIDetails.xaml file to navigate to the
Details page of a specific work item. As you have seen, there is one argument in
this workflow - WIID.

o Update the status of the work item to Complete by invoking the System1
\System1_UpdateWorkItem.xaml file. Be sure to set the correct arguments for the
Comment and Status sections. As mentioned in the PDD file, set the status to
Completed, and the value of the Comment to Uploaded with ID uploadID.

o Finally, we need to leave the application in its initial state, so that we can process
next item. To do that, invoke the System1
\System1_NavigateTo_Dashboard.xaml file to return to Dashboard page.

 24 Walkthrough – Generate Yearly Report for Vendor

● We are done with the process implementation. Next, we need to test the entire process. You
should have already tested each individual workflow, right after development, using default
values for the arguments.

o Run the Main workflow several times and make sure that it is executed correctly
every time. If it isn’t, fix the issues and run it again.

o Use the Reset test data option in the User options menu to generate a fresh set of data
for testing purposes.

o Use the Dispatcher to upload new items to the Queue if needed.

Process implementation notes.
We started with a Dispatcher process that was used for uploading queue items to
Orchestrator. Then, we processed each queue item using the Performer. Notice that the status of a
transaction in the queue changes after it is processed. All the items are independent of one
another and can be processed in parallel, using multiple Performer robots.

 25 Walkthrough – Generate Yearly Report for Vendor

