
© Andy Menon

Page | 1

Advanced Enterprise RPA

Process Template
A Database Configurable RPA Process Flow Template

Contents

Introduction... 3

The Configuration Database ... 3

Tenant ... 4

Process .. 5

Setting_Category .. 5

Setting_Type ... 6

Config .. 6

VW_Load_Config- The Public Interface View ... 7

Framework components to access the View .. 8

Connecting to the Configuration Database .. 9

Justifying the use of ODBC DSNs ... 9

To be fair, some flip sides to ODBC DSNs ... 10

Conclusion .. 10

Setting up a Microsoft Access DSN on the Robot Machine ... 10

Locking the MS Access Database .. 11

Centralizing the MS Access Database File ... 11

Setting up a Remote Database DSN on the Robot Machine .. 14

The MasterConfig.xlsx Framework Configuration File ... 16

© Andy Menon

Page | 2

Importing Additional Database Libraries ... 18

Configuring a New RPA Process Flow in the Configuration Database .. 19

Configuring a New RPA Process Flow .. 23

Main.xaml ... 23

Init State Machine ... 24

Loading Configuration Settings – Most Significant Change ... 25

KillAllFolders.xaml - New Component to Drop Folders .. 26

Move_or_Delete_Directory.xaml... 27

Move_or_Delete_File.xaml .. 27

InitAllApplications.xaml ... 27

Create_Directory.xaml - New Component to Create Folders ... 28

KillAllProcesses.xaml ... 29

Utility Component - Identify_Processes_By_Name.xaml ... 29

Send_Email_Notification.xaml ... 31

Validating the Project before Deployment .. 31

Test Results and End Note ... 32

© Andy Menon

Page | 3

Introduction

This User guide documents the set up and configuration of an Advanced Enterprise RPA Process

Template. This framework template enables enterprises to configure settings for their RPA

Processes in local or remote databases such as MS Access, SQL Server, MySQL, PostgreSQL or

AWS RDS.

Configuring the framework in databases enables enterprises to better organize, secure and port

their RPA processes across the enterprise.

This framework is built upon an already existing UiPath component published here at the UiPath

Go! Marketplace. Consequently, this advanced enhancement retains the capability of the original

to organize configurations in a local Excel file.

The Configuration Database

In its current form an Excel file is used to configure settings of an RPA Process built using the

current framework. While this is great for small scaled operations, managing individual Excel files

becomes logistically difficult especially when there are several tens, if not hundreds of integrations

involved. Besides, Excel files are documents and are prone to getting loosely dispersed across an

enterprise via emails, messengers and shared drives. This may result in an outdated or wrongly

configured file deployed to a production environment by accident.

The key advancement in this template is its ability to consume configuration settings from a local

database (such as Microsoft Access) or a remote, full-featured enterprise SQL database such as

Microsoft SQL Server, MySQL, AWS RDS, or PostgreSQL.

In order to make it easier to get started, a templated Microsoft Access Database is included as

part of the framework template within the \Data folder. The schema from this database could be

easily extracted and recreated on any common enterprise database if you choose to.

The database is very simple and consists of five tables as shown in the design schematic below:

https://go.uipath.com/component/enhanced-reframework-57011

© Andy Menon

Page | 4

Tenant

The Tenant table maintains a logical record of the tenant(s) where an RPA process has been

deployed. An enterprise deployment could consist of one or more Orchestrators that are either

on-premise or remote, single or multi-tenant. Therefore, the Tenant is not a technical attribute of

a given RPA process. Rather, it helps enterprises to better recognize and keep track of where their

RPA processes are deployed to, especially if there many of them across several groups across the

organization.

The Active_Flg indicates that the first tenant is currently active and in service.

NOTE

The Tenant could be further broken down to Tenant and Service. However, the config database

and the template could be easily modified during implementation based on how an enterprise

would prefer to organize their RPA processes. And for this reason, such depth is not covered in

the current scope of this template.

© Andy Menon

Page | 5

Process

Maintains a record of the names of the RPA Business processes deployed across the enterprise.

Ideally, this would be the value that would be set for the logF_BusinessProcessName key in the

Config.xlsx document:

In the Process table, a business process is recorded as follows:

As before, the Active_Flg indicates that a process is in active service.

NOTE

The Access database comes pre-loaded with a “shell process” named

FRAMEWORK_DEFAULT_SETTINGS. This process will make it easier to configure actual business

processes in the database as we will see in subsequent sections.

The shell is used to aid in the configuration setup of new RPA processes and is not a deployable

process by itself. Therefore, do not delete entries for this shell process from the Config table!

Setting_Category

The configuration broadly recognizes two categories of settings - SYSTEM_DEFINED and

USER_DEFINED. As the names suggest, the system-defined settings are the 18 standard settings

across the three tabs of the Config.xls configuration document.

The user-defined settings on the other hand are those that are specific to a given RPA process

and are explicitly added by the users over and above the system-defined settings.

Organizing settings in this manner makes it easier to distinguish them for better maintenance.

For Example: Users would exercise caution before going in and changing any of the settings if

they knew that they are SYSTEM_DEFINED. Similarly, USER_DEFINED settings would make it easier

to copy configurations over to a new processes that resembles an existing one.

Each setting in the Config table (described later below) is associated with a setting category.

© Andy Menon

Page | 6

Setting_Type

Easily defined, these are the names of the three worksheets from the traditional Config.xlsx

configuration file. Each setting in the Config table is associated with a setting type.

The figure below shows the parallels between Config.xlsx and the setting types in the Setting_Type

table

Config

This is the central configuration table that drives an RPA Process. An Advanced RPA Process flow

built using this template consumes settings from the Config table via an interface view (described

in the next section). The table has been named so to easily recognize the parallels between the

configuration database and the traditional excel file named Config.xlsx

Each entry in the Config table is comprised of three columns:

Setting_Name – counterpart to the “Name” column from the Config.xlsx

Setting_Value – counterpart to the “Value” column from the Config.xlsx

Setting_Description- the “Description” counterpart from the Config.xlsx

NOTE

Unlike the Config.xlsx the names of the columns have been changed because “Name” and “Value”

are reserved keywords in some database platforms.

For Example: PostgreSQL does not support a column named “Name”

© Andy Menon

Page | 7

Figure below shows the parallels between the Config.xlsx document and the Config database

table:

Each entry in the Config table is associated with the following attributes from the tables described

earlier:

1. The Tenant ID from the Tenant table

2. The Process ID from the Process table

3. The Setting_Category ID from the Setting_Category table

4. The Setting_Type ID from the Setting_Type table

VW_Load_Config- The Public Interface View
Regardless of the underlying structure of the configuration database, the RPA process will

consume settings from a public interface view that must remain largely unchanged. The view must

expose a set of mandatory columns to work seamlessly irrespective of where the database has

been deployed to.

In line with UiPath’s Security Best Practices, it’s recommended to implement the following:

1. Tightly regulate edit permissions to the database and underlying tables

2. Expose just the view to the RPA application using a non-Admin database login

3. If the database is MS Access, then lock the database down using a complex password

The view must be visible to the RPA process in the format shown below. This template is by default

designed to load settings as demonstrated by this example SQL:

SELECT Setting_Name, Setting_Value, Setting_Type_Nm

FROM VW_Load_Config

WHERE Tenant_Nm = ‘Thanos’

AND Process_Nm = ‘REF_DB_Accounts_DataExtractor’;

Note that all the three columns in the SELECT statement are required. The template will load

settings that are associated with a pre-defined Tenant and Process names organized in the Tenant

and Process configuration tables respectively, as discussed in the previous sections.

© Andy Menon

Page | 8

NOTE

The steps to point the template to the Configuration database will be described in the later

sections of this document.

Framework components to access the View

The advanced framework comes with a couple of additional sequence components to access the

view and load the configuration settings. These components have been added to the Framework

folder and will not require any modifications unless you plan to customize access to the database.

© Andy Menon

Page | 9

NOTE

Although identical, the components to access a Local and Remote databases have been provided

separately to consider the possibility of how you might want to set up access to the Configuration

database.

For Example: You may opt to configure a process to originally load settings from a local MS Access

database via a System DSN set up on the Robot machine. However, when you migrate the

configurations to a Remote database, you may opt to connect to that database via an OLE DB

driver. In this case you may have to rewrite the component

InitAllSettings_From_RemoteDB_DSN.xaml to build an OLEDB connection string in memory

before connecting to the configuration database.

Connecting to the Configuration Database

In the interest of reducing complexity and risks of managing connection strings, ODBC Data

Source Names (DSNs) will be the default and preferred method to gain access to the configuration

database from the Robot machines.

Justifying the use of ODBC DSNs

DSN connection strings are source agnostic – the client will need to know only the DSN name

without having any knowledge about the actual database.

DSNs minimize or eliminate the need to manage passwords and lengthy connection strings – a

connection string will expose details such as server names, database names and usernames to the

connecting clients

If passwords are stored as SecureString in an Orchestrator credential asset, there is no easy way to

decrypt the SecureString password at runtime and integrate it into a connection string – not all

connection providers have an easy way to do so.

The other option is to store passwords using standard encryption methods – however, a

decryption routine can most likely expose a password in plaintext format when the code is being

tested in a debugger. Besides, if encryption standards change, then this code will require to be

updated!

In most enterprise environments, system administrators or DBAs will own the responsibility of

managing DSNs and therefore absolving developers from directly having knowledge of any

username or passwords to access a production database server.

Finally, a DSN will abstract the RPA process from an outright change in the underlying database

technology – for example, if the configuration database is moved from SQL Server to Oracle, the

© Andy Menon

Page | 10

process will have no idea that this change occurred as long as the DSN name and the interface

view structure remain unchanged.

To be fair, some flip sides to ODBC DSNs

ODBC DSN set up is natively integrated into the Windows platform – other platforms have no

concept of setting up a DSN in the same manner as it’s set up on a Windows machine.

Most commercial setups use JDBC drivers to connect to databases. This is as easy as copying a

JDBC library file into their applications without having to perform a formal driver installation on

the Robot machine.

DSNs will need formal installation of ODBC drivers suited to the target database platform – For

example, the MySQL ODBC driver or the PostgreSQL ODBC driver will need to be installed on each

Robot machine based on the target database this machine is going to connect to. If there are

several Robot machines, all of them will be forced to go through this tedious installation process!

Conclusion

If other attributes of the enterprise architecture (database products, servers etc.) remain largely

constant over a span of time, the positives of DSNs will outweigh the negatives and therefore this

template will use the DSN approach to set up access to the configuration databases.

Setting up a Microsoft Access DSN on the Robot Machine

This template comes with a 2016 version of a Microsoft Access Database. The file name has the

extension .accdb unlike previous versions that have the .mdb file extension.

Depending on which version (32 or 64 bit) of Office you have installed, you may have to download

and run AccessDatabaseEngine.exe or AccessDatabaseEngine_X64.exe on the Robot machine. You

can install only one of them on a host machine!

NOTE

If you have both versions of office installed, then the 32-bit version will not allow you to connect

to Access because the 64-bit office is installed, and vice-versa. This is a catch-22 situation and the

easiest workaround would be to save the MS Access database as a .mdb file and use the default

MS Access driver that is provided in the 32-bit ODBC Manager in Windows.

© Andy Menon

Page | 11

Locking the MS Access Database

The MS Access database in this template is by default locked with a password. The password is:

ChangeYourPassword!

It’s recommended that you open the database in Exclusive Mode, remove this password and

lock the database with a new one before configuring the DSN.

Centralizing the MS Access Database File

The DSN for MS Access points directly to the location of the database file. Therefore, it isn’t a

good idea to keep the database under the Data folder of the RPA Process. Keeping the Access

database under the Data folder will mean that you will need to have a separate DSN for each

application. This could soon become as painful as managing a separate Config.xlsx file for each

RPA process!

A better solution would be to save the database file to a central location on the Robot machine

before configuring the DSN.

© Andy Menon

Page | 12

This has two advantages:

1. Several RPA processes can make use of a single, centrally managed database

2. The file location will remain constant, and only one DSN can be used by multiple

processes to load their configuration settings

Configuring the DSN is a pretty simple process – make sure that you point to the database, and

then configure the Username as Admin (default) and the password you used to lockdown the

database with. Give the DSN a meaningful name for ease of use in the next steps.

Follow steps 1 through 9 to set up the DSN as shown below. Note down the name of the DSN as

we will be needing it in when setting up the Master configuration file later during the framework

configuration.

© Andy Menon

Page | 13

© Andy Menon

Page | 14

Setting up a Remote Database DSN on the Robot Machine

We refer to this as a Remote Database DSN in general because the database might be any

commercial, enterprise grade SQL server such as MySQL or SQL Server, just to name a few. In this

example, I will be using the MySQL v8.0.x Community Edition. Note that it’s easier to install the

ODBC drivers whilst installing the Server as it will be made available automatically in the ODBC

Manager after the install.

© Andy Menon

Page | 15

Configuring the DSN for a remote DSN is similar to the previous series of steps, except that it has

to be done in an ODBC connector box that’s slightly different depending on which database you’re

connecting to. Make sure that you test the connection using the Test button. As usual is the case,

note down the DSN name for use in the next steps.

© Andy Menon

Page | 16

CAUTION

Do not use the default root user account for Production deployments!

The MasterConfig.xlsx Framework Configuration File

A new addition to this Advanced Template is the Master Configuration file MasterConfig.xlsx file

under the Data folder.

Note that, this file is a mandatory addition and not a replacement for Config.xlsx.

This file will need to be configured for each RPA Process, and the settings are few and simple.

Here below is a typical master configuration set up if your Configuration database is a remote

SQL database:

© Andy Menon

Page | 17

Master Configuration Key Description

logF_BusinessProcessName Legacy | Set to the value of Process_Name

Tenant_Name The Tenant name from the Tenant database table

Process_Name The RPA Process from the Process database
table deployed to the above tenant

Configuration_Source REMOTE_DB if configuration database is a
remote SQL database

LOCAL_DB if configuration is a local MS Access
database

CONFIG_FILE if using Config.xlsx configuration
file

Configuration_DSN_Name Required only if you’re configuring settings in a
database. Otherwise, leave blank!

This is the name of the DSN configured in the
previous section. The format of the connection
string must be:

Dsn=Name_Of_Your_DSN

No quotes or blank spaces!

Configuration_DB_File Required if you’re using a Local MS Access
Database or the Config.xlsx file . Blank otherwise.

Enable_DB_Configuration Defaults to No (N). By default the configuration
reads from the Config.xlsx file. You must explicitly
enable the template to read from a database once
the connection has been set up and tested.

Here’s how the Master configuration is set up if you’re using a configuration database:

© Andy Menon

Page | 18

Here’s how the Master configuration is set up if you’re using a Local MS Access Database:

And this is how the Master configuration will change if you’re using the traditional Config.xlsx file:

In this case you will need to add all your settings to the Config.xlsx just as in the traditional

Framework, and not in the configuration database. Also, the Enable_DB_Configuration attribute

must be set to N.

NOTE

If you are not using Config.xlsx, keep it empty but do not remove it from the Data folder!

Importing Additional Database Libraries

In case you are not going to use a DSN to configure a connection to the database, then you may

need to import additional dependencies into your RPA Process based on which database you plan

to connect to.

Here’s an example of importing the SQL Client libraries for the MySQL database into the RPA

Process.

© Andy Menon

Page | 19

The approach here is to connect to the MySQL database by using the SQL Client library and a

connection string. In this case, you will have to rewrite the

InitAllSettings_From_RemoteDB_DSN.xaml component to connect to MySQL using the SQL

Client library (as shown below). Or, replace this component with your own.

The in_Connection_String parameter in this case will change from a simple DSN name to a fully

formed connection string.

Configuring a New RPA Process Flow in the

Configuration Database

The following steps are applicable to the local MS Access database or the remote database. If you

have the data tables configured identically, these steps should work without undue problems. The

following example queries are modelled after the MySQL database. You will have to change them

accordingly to suit your setup.

Create a Tenant Entry in the Tenant Table

/*--*/

/* Make RPA Tenat Entry in the Tenant table if not already existing */

/* Set active_flg to True to activate Tenant

/*--*/

insert into rpa_metabase.tenant

(tenant_nm,tenant_description, active_flg)

© Andy Menon

Page | 20

values

('Thanos', 'The Default Thanos Win10 SOHO Tenant', 1);

Create an RPA Process Entry in the Process Table

/*--*/

/* Make RPA Process Entry for Application # 1 */

/* Activate Process by setting Active_Flg to True */

/*--*/

insert into process(Process_Name, Process_Description, active_flg)

values

('REF_DB_Accounts_DataExtractor',

'Extracts Work Items of type WI1 and description "Verify Account Position"

from ACME System1 into an Excel File',

1);

Copy Standard Configuration Settings into the Config Table

/*--*/

/* Copy Standard System-defined settings to your process */

/* Update settings as applicable to the current RPA Process

/*--*/

insert into config(

 Setting_Name, Setting_Value, Setting_Description,

 Tenant_ID, Setting_Type, Setting_Category_ID,

 active_flg, Process_ID

)

select

Setting_Name, Setting_Value, Setting_Description,

Tenant_ID, Setting_Type, Setting_Category_ID,

active_flg,

(select ID from Process where Process_Name = 'REF_DB_Accounts_DataExtractor')

Process_ID

© Andy Menon

Page | 21

from config where

/* settings from default/standard project */

Process_ID = (select ID from Process where Process_Name =

'FRAMEWORK_DEFAULT_SETTINGS')

/* deployed to your tenant */

and

Tenant_ID = (select Tenant_ID from tenant where Tenant_Nm = 'Thanos')

/* All system defined standard settings */

and

Setting_Category_ID = (select Setting_Category_ID from setting_category where

Setting_Category='SYSTEM_DEFINED')

order by ID

;

/* Update Application Name */

update config

set Setting_Value = 'REF_DB_Accounts_DataExtractor'

where Setting_Name = 'logF_BusinessProcessName'

and Tenant_ID = (select Tenant_ID from tenant where Tenant_Nm = 'Thanos')

;

/* If Orchestrator is not applicable, update entry to indicate so */

update config

set Setting_Value = 'Orch_Not_Applicable'

where Setting_Name = 'OrchestratorQueueName'

and Tenant_ID = (select Tenant_ID from tenant where Tenant_Nm = 'Thanos')

and Setting_Value = 'KibanaDemoQueue'

and Process_Id = (select ID from Process where Process_Name =

'REF_DB_Accounts_DataExtractor')

;

/* If no Orchestrator, set MaxRetryNumber to a Non-zero value */

update config

© Andy Menon

Page | 22

set Setting_Value = '2'

where Setting_Name = 'MaxRetryNumber'

and Tenant_ID = (select Tenant_ID from tenant where Tenant_Nm = 'Thanos')

and Process_Id = (select ID from Process where Process_Name =

'REF_DB_Accounts_DataExtractor')

and Setting_Value = '0';

Insert Process-specific Settings applicable to the Current Process

This section depends on the process you’re trying to build. An example would be an application

URL that the Robot must navigate to:

insert into config(

 Setting_Name, Setting_Value, Setting_Description,

 Tenant_ID, Setting_Type, Setting_Category_ID,

 active_flg, Process_ID)

select

'System1_URL' Setting_Name,

'https://acme-test.uipath.com' Setting_Value,

'The System URL that is the target of the RPA Process' as

Setting_Description,

(select Tenant_ID from tenant where Tenant_Nm = 'Thanos') as Tenant_ID,

(select Setting_Type_ID from setting_type where Setting_Type_Nm = 'SETTING')

AS Setting_Type,

(select Setting_Category_ID from setting_category where

Setting_Category='USER_DEFINED') Setting_Category_ID,

1 AS active_flg,

(select ID from Process where Process_Name = 'REF_DB_Accounts_DataExtractor')

AS Process_ID;

Configure as many settings your RPA Process will need to complete the Database configuration

step.

Finally, Test the Interface View

SELECT * FROM VW_Load_Config

WHERE Tenant_Nm = ‘Thanos’ AND Process_Nm = ‘REF_DB_Accounts_DataExtractor’;

© Andy Menon

Page | 23

All the system-defined settings and user-defined settings for the specified Tenant and Process

names must be visible in the view. If you don’t see all of them make sure that the active_flg is set

to true in the Config, Process and the Tenant table. Also make sure that the Tenant and Process

IDs are correctly associated with each of the entries in the Config table.

On a similar note, if you want to prevent a setting from loading up, set the active_flag to false in

the config table for that Tenant and Process.

Configuring a New RPA Process Flow

Before you proceed, you will need to complete the Database set up and create all the entries for

the process settings in the database as described in the previous sections. You will need to be

familiar with the original UiPath component to continue. The UiPath training and documentation

covers the configuration of the original template in detail. Therefore, this document covers only

the key differences and changes in how this Advanced Template is different from the original. in

order to proceed further.

Main.xaml

Visually, there isn’t much change. However, there is one additional variable added to this

component.

https://go.uipath.com/component/enhanced-reframework-57011

© Andy Menon

Page | 24

The configurations from the MasterConfig.xlsx will be loaded into the Master_Config dictionary

collection in the Init state machine.

Init State Machine

The Init State machine invokes the Framework\Init_Master_Settings.xaml sequence to load the

configurations from the MasterConfig.xlsx and returns the Master_Config dictionary collection.

© Andy Menon

Page | 25

No changes required here other than to make sure that the arguments are being passed in

correctly to this workflow.

Loading Configuration Settings – Most Significant Change

The sequence shown below has been extensively modified to load configuration settings based

on how the MasterConfig.xlsx has been configured. The following screen shots show the extent

of the modification.

NOTE

The InitAllSettings_From_RemoteDB_DSN.xaml and InitAllSettings_From_LocalDB_DSN.xaml will

be invoked only if the master setting Enable_DB_Configuration is enabled and if a DSN has been

successfully configured to connect to a local or remote database from the Robot machine.

© Andy Menon

Page | 26

Note that the new components InitAllSettings_From_RemoteDB_DSN.xaml and

InitAllSettings_From_LocalDB_DSN.xaml take the DSN Name, the Tenant Name and Process

Name from the Master_Config Dictionary object as input arguments and return the standard

Config dictionary as the output after loading their configurations settings from the database.

KillAllFolders.xaml - New Component to Drop Folders

Optionally, you can configure the framework to drop folders related to the process during the

restart sequence.

For Example: In this process, a setting named System1_Folder_List has been configured as a User-

defined setting. The value of this setting would be a comma-delimited list of folders that need to

be dropped when the robot restarts like so:

C:\UiPath_Asset_Folder\stage,C:\UiPath_Asset_Folder\archive

You can configure this variable accordingly based on how you name it. It takes the value of the

System1_Folder_List parameter and deletes all the folders. Note that this part of the code will run

only if the setting is found in the Config dictionary!

© Andy Menon

Page | 27

Move_or_Delete_Directory.xaml

This new addition in the Common folder is invoked by KillAllFolders.xaml to move or drop the

folders. If a folder contains files, all files are deleted before the folder can be dropped or moved.

The sequence contains documentation on how to use the component.

Move_or_Delete_File.xaml

This is a component like the Move_or_Delete_Directory.xaml except that it moves or drops files.

Documentation for this component is elaborated in the sequence.

InitAllApplications.xaml

This standard component has been modified to create folders during the Robot startup. Again,

this code runs only if a suitable parameter has been configured for the application.

© Andy Menon

Page | 28

Create_Directory.xaml - New Component to Create Folders

This component is integrated into the InitAllApplications.xaml to create folders during robot start

up. Just like the KillAllFolders.xaml. this component takes the list of comma-delimited folder paths

and creates the folders.

© Andy Menon

Page | 29

KillAllProcesses.xaml

This component has been modified to take one parameter. Just as the KillAllFolders.xaml, a

parameter named Process_Names_List has been configured as a user-defined setting. It contains

a comma-delimited list of all the processes that need to be killed during start up.

Example: If your RPA Process needs to kill Internet Explorer and Chrome, then the value of this

argument would be

iexplore,chrome

If only one process needs to be killed, then only one process name can be configured without the

delimiting comma.

Utility Component - Identify_Processes_By_Name.xaml

To help generate a list of process names to kill, a new utility component has been added to the

Common folder.

To generate the list of processes, follow these steps:

1. Open this component in Studio

2. Disable sequence named like “Seq 2:” if not already done

3. Enable sequence named like “Seq 1:” if not already enabled

4. Change the name of the machine to match your robot machine

5. Run the Sequence independently

6. Copy the names of the processes you want to kill from the Output tab

© Andy Menon

Page | 30

NOTE

The machine name can be obtained by going to My Computer > Properties on the windows

machine.

The System.Diagnostics object does not support remote computer names- therefore do not use

the “Full computer name”, if the name of the computer is like computername.domain.com!

Configure the process names as a CSV list for the parameter Process_Names_List in the

configuration database or the Config.xlsx file. From the above screen shot, this would be:

MicrosoftEdgeSH,chrome

NOTE

The processes you want to kill must be already running before running this utility - they will not

show up on the process list otherwise.

© Andy Menon

Page | 31

Send_Email_Notification.xaml

This component has been modified to take several parameters for the purposes of sending emails

notifications. These parameters are configured as user-defined settings in the configuration.

The settings above will feature in an email such as the failure notification I receive each time there

is a login failure:

The purpose of these settings is to provide quick hints in the email subject and body to help

recipients to better respond to such notifications.

UiPath foundation training already covers the subject of configuring email activities in detail.

Validating the Project before Deployment

Before deploying the process to the Orchestrator, make sure to validate the project completely to

make sure that the deployment does not fail.

You will most likely encounter this error.

A variable named Conn_MySqlDB of type MySqlConnection will cause a validation failure in the

InitAllSettings_From_RemoteDB_DSN.xaml component. That is because, it has reference to the

MySql Connection library that was removed before this Template was published to the UiPath Go!

Marketplace.

Solution: Open the XAML file InitAllSettings_From_RemoteDB_DSN.xaml and click the

“Remove Unused variables” from the Menu bar. This will remove the orphaned variables.

© Andy Menon

Page | 32

Test Results and End Note

The Advanced Enterprise RPA Process Template has been tested by building a fully functional RPA

Process. The configuration settings for this process were deployed to a locally centralized MS

Access database, a Remote MySQL database and the traditional Config.xlsx database. The process

was then tested by switching the options in the MasterConfig.xlsx file to consume settings from

the local database, the remote database and the Excel config.

The screen shot below displays the version information for each of the tests:

And the following screen shots indicate the fact that the settings were loaded from a different

configuration source during each of the three tests.

© Andy Menon

Page | 33

Local MS Access Configuration:

Remote MySQL Database Configuration:

Traditional Config.xlsx Configuration:

Obviously, the log output for this configuration has no visible hints because the original

component that loads the settings from the Excel has not been modified in any way.

The process ran end-to-end without any incident when executed from the Orchestrator when

switched between each of the three configurations .

End

© Andy Menon

Page | 34

Change Log

09.21.2019 Minor edits and typos corrected.

New section titled Validating the Project before Deployment
added

Andy Menon

08.30.2019 Document renamed to:

Advanced Enterprise RPA Process Template - User
Guide.docx

Major Content changes:

All references to the terms ‘Robotic Enterprise Framework’ and
‘REFramework’ removed! Any references to these terms are
done via web links that will direct the user to the subject of this
reference.

New section titled Importing Additional Database Libraries
added

Instructions revised further for section titled:

Utility Component - Identify_Processes_By_Name.xaml

Section titled The MasterConfig.xlsx Framework
Configuration File updated

Section titled Loading Configuration Settings – Most
Significant Change updated

Table of Contents updated

This change log section added

Andy Menon

08.26.2019 Minor typos corrected

Instructions revised for section titled:

Utility Component - Identify_Processes_By_Name.xaml

Andy Menon

08.25.2019 Original Andy Menon

© Andy Menon

Page | 35

	Introduction
	The Configuration Database
	Tenant
	Process
	Setting_Category
	Setting_Type
	Config
	VW_Load_Config- The Public Interface View
	Regardless of the underlying structure of the configuration database, the RPA process will consume settings from a public interface view that must remain largely unchanged. The view must expose a set of mandatory columns to work seamlessly irrespectiv...

	Framework components to access the View

	Connecting to the Configuration Database
	Justifying the use of ODBC DSNs
	To be fair, some flip sides to ODBC DSNs
	Conclusion
	Setting up a Microsoft Access DSN on the Robot Machine
	Locking the MS Access Database
	Centralizing the MS Access Database File
	Setting up a Remote Database DSN on the Robot Machine
	The MasterConfig.xlsx Framework Configuration File
	Importing Additional Database Libraries

	Configuring a New RPA Process Flow in the Configuration Database
	Configuring a New RPA Process Flow
	Main.xaml
	Init State Machine
	Loading Configuration Settings – Most Significant Change
	KillAllFolders.xaml - New Component to Drop Folders
	Move_or_Delete_Directory.xaml
	Move_or_Delete_File.xaml
	InitAllApplications.xaml
	Create_Directory.xaml - New Component to Create Folders
	KillAllProcesses.xaml
	Utility Component - Identify_Processes_By_Name.xaml
	Send_Email_Notification.xaml
	Validating the Project before Deployment
	Test Results and End Note
	End

