

Robotic

Enterprise

Framework

Contents

Overview.. 4

Transaction Processing .. 4

Main Features.. 5

Settings .. 5

Logging ... 9

Exception Handling and Recovery ... 11

Architecture ... 12

States ... 12

Shared Variables .. 15

Workflows .. 17

Framework\InitAllSettings.xaml .. 17

Framework\KillAllProcesses.xaml ... 18

Framework\InitAllApplications.xaml... 19

Framework\GetTransactionData.xaml .. 19

Framework\Process.xam.. 21

Framework\SetTransactionStatus.xaml .. 22

Framework\RetryCurrentTransaction.xam ... 24

Framework\TakeScreenshot.xaml ... 25

Framework\CloseAllApplications.xaml ... 25

Using the Framework .. 26

Changes to Framework Files .. 26

Data\Config.xlsx ... 26

Main.xaml ... 27

Framework\GetTransactionData.xaml .. 28

Framework\Process.xam.. 29

Framework\SetTransactionStatus.xaml .. 30

Practical Example 1: Using Queues .. 31

Practical Example 2: Using Tabular Data ... 33

Test Framework ... 36

Distribution and Support to Extensions .. 38

Overview

A well-organized project can directly impact the success of an RPA initiative. Besides

choosing processes favorable to automation (i.e., mature processes with well-defined

steps and low exception rate) and creating clear documentation (i.e., Solution Design

Document and Process Definition Document), the quality of the implementation itself

plays a major role for a positive outcome.

Although different RPA implementations can have their own unique traits, a common

set of practices can usually be seen in successful projects. Among those, flexible

configuration, robust exception handling and meaningful logging make projects easier

to implement, understand and maintain. In addition, in the case of large

implementations, scalability also becomes an important factor due to the volume of data

processed.

The Robotic Enterprise Framework, REFramework, is an UiPath Studio template with

features that cover these essential practices and can be used as the starting point for

most RPA projects, especially the ones that require scalable processing. Although the

REFramework can be adapted to any process, its advantages are especially evident when

the framework is used to implement transactional processes. Since transaction items

are independent from each other, it is possible to handle exceptions and manage logging

at transaction level, offering more detailed information about each processed item and

making it easier to retry or eventually skip failed transactions.

This guide describes the framework in detail with realistic use cases and practical

examples. Firstly, section Transaction Processing introduces different types of

processes and explains how they are related to the REFramework. After that, an

overview of the main aspects of the framework is offered in section Main Features. Next,

the workflows that compose the framework are detailed in Architecture section. Section

Using the Framework clarifies how to use the framework in practice and includes two

step-by-step examples. Moreover, the Test Framework section outlines how to use the

unit testing capabilities of the framework. The last section, Distribution and Support to

Extensions, presents the framework’s license and policies related to distribution and

support.

Transaction Processing

Although business processes can have different characteristics, it is usually possible to

classify them based on how they repeat certain steps when processing data.

For example, consider a business process that extracts certain data from a PDF file

specified by a user and inputs that data into a web system. In this scenario, to extract

data from a different PDF file, the user must execute the process again

and pass the new file as input.

However, if a user specifies a batch of PDF files instead of just one, the same processing

steps are repeated for each of the files in the batch. In this case, if each of the PDF files

can be processed independent of each other, then it is possible to say that each file is a

transaction within the whole process. In other words, a transaction represents a single

unit of work that can be independently processed.

Although the kind of transaction depends on the process, it is important to clearly

identify transactions within the process to be automated. The REFramework natively

considers the processing of transactions and performs the same steps defined in the

Process Transaction state on each transaction. The States section gives more details

about specifying a source of transactions and how each one is processed.

Main Features

Other than naturally enabling transactional processing, the REFramework also has other

features that are helpful in the implementation of stable and scalable automation

projects: settings, logging, and exception handling.

Settings

To make it easier to maintain a project and quickly change configuration values, it is a

good practice to keep them separated from the workflows themselves. In such cases, a

configuration file can be used to define parameters that are used throughout the project

and to avoid hardcoded values in workflows.

The REFramework offers a configuration file, named Config.xlsx and located in the Data

folder, which can be used to define project configuration parameters.

Table 1 - Examples of constants.

Name Value Description

Department Accounting Default name for department.

Bank Code ABC123 Code of the bank to be used for payments.

These parameters are then read into the Config dictionary variable of the Main.xaml

file. This dictionary is passed as argument to different files of the framework.

For easier manipulation, this configuration file is an Excel workbook with three sheets:

• Settings: Configuration values to be used throughout the project

and that usually depend on the environment being used. For example,

names of queues, folder paths or URLs for web systems.

• Constants: Values that are supposed to be the same across all deployments of

the workflow. For example, the department name or the bank name to be used

as input in a certain screen.

• Assets: Values defined as assets in Orchestrator.

The rows from the Settings and the Constants sheets indicate keys and values that are

read into the Config dictionary during the initialization phase of the framework. The

Name column represents a key in Config and the Value column defines the value

associated with that key. The Description column offers an explanation about the row,

but it is not included in the dictionary. Table 1 provides an example of how to define

constants in the Constants sheet.

For instance, if a process needs to define a constant for a department name, then that

can be added to the Constants sheet: the name is Department, the value is Accounting,

and the explanation is Default name for department. Then, during the implementation

of workflows, developers can use Config(“Department”) to retrieve the value

Accounting. Figure 1 illustrates this relationship between the configuration file

Config.xlsx and the Config dictionary.

Config.xlsx Configuration File

Name Value Description

Department Accounting Default name for department.

BankName Bank ABC Default name for bank.

Config Dictionary

Key Value Usage

Department Accounting Config(“Department”).ToString

BankName Bank ABC Config(“BankName”).ToString

Figure 1 - Correspondence Between Config.xlsx and Config Dictionary.

There are many constants defined by default and the Description column

details their purpose. Among those, one particularly important is

MaxRetryNumber, which specifies how many times a robot attempts to retry processing

a transaction that failed with a system exception (section Exception Handling and

Recovery offers details about exceptions).

If an Orchestrator queue is being used as a source of transactions, then the value of

MaxRetryNumber should be zero, indicating that the retrying management is done by

Orchestrator. If queues are not used, the value of MaxRetryNumber should be changed

to an integer that represents the desired number of retries.

Another important constant is MaxConsecutiveSystemExceptions, which specifies the

maximum number of consecutive System Exceptions allowed before stopping the job.

To disable this feature, the value of the constant should be set to 0.

The Assets sheet behaves differently than the other two, since the Name column

establishes the key to be included in the Config dictionary, and the Value column

determines the name of the asset as defined in Orchestrator.

Figure 2 shows the relationship between the assets defined in Orchestrator, their

definition in the Assets sheet of the Config.xlsx file and their usage in workflows by

means of the Config dictionary.

Orchestrator Asset

Asset Name Type Text Description

CountryName Text Romania Default name for country.

Assets Sheet in Config.xlsx Configuration File

Name Asset OrchestratorAssetFolder Description

CountryAsset CountryName Default name for

country.

Config Dictionary

Key Value Usage

CountryAsset Romania Config(“CountryAsset”).ToString

Figure 2 - Relationship Between Orchestrator Assets, Config.xlsx and Config Dictionary.

For example, if there is an asset in Orchestrator called CountryName, there can be a row

in the Assets sheet whose Name is CountryAsset and whose Value is CountryName.

During the initialization phase, the framework retrieves the contents of the

CountryName asset and inserts it as a value corresponding to the key CountryAsset in

the Config dictionary.

The above example uses different names for the asset name in Orchestrator

(CountryName) and the corresponding dictionary key (CountryAsset), but it is common

to use the same name for both. By doing so, it becomes easier to maintain the

configuration file and to reduce naming mistakes during development.

The Assets sheet from the Config.xlsx file contains the OrchestratorAssetFolder column.

This column stores the path of the Orchestrator folder where the asset is located and

must be retrieved from.

In case one of the Assets is not found in Orchestrator, an exception will be thrown,

resulting in the Job being stopped.

Although the Assets sheet can be used for most types of assets, it cannot be used for

assets of type credential, since credentials have two values: username and password. To

use credential assets defined in Orchestrator, include them in the Settings sheet instead

(Figure 3): the Name column defines the key in the Config dictionary, the Value column

determines the name of the credential asset, and the Description column provides an

explanation about the credential. During the implementation, use the Get Credential

activity to retrieve the credential from Orchestrator.

If the credential asset is stored in a different Orchestrator folder than the one where the

process is running, an additional row in the Settings sheet might be needed in order to

store the folder name.

Orchestrator Credential Asset

Asset Name Type Username Password Description

System1Credential Credential UserABC Pass123
Credential to

access System1.

Settings Sheet in Config.xlsx Configuration File

Name Value Description

System1Credential System1Credential Credential for ACME System 1.

Config Dictionary

Key Value Usage

System1Credential System1Credential Config(“System1Credential”).ToString

Figure 3 - Relationship Between Orchestrator Credential Assets, Config.xlsx and Config Dictionary.

As a final note about Config.xlsx, since the configuration file is not encrypted, it should

not be used to directly store credentials. Instead, it is safer to use Orchestrator assets or

Windows Credential Manager to save sensitive data.

Logging

The proper use of logging in an automation project has several benefits, such as better

visibility of actions and events, easier debugging and more meaningful auditing.

The REFramework has a comprehensive logging structure that uses different levels of

the Log Message activity to output the statuses for the transactions, the exceptions, and

the transition between states. Most of the used log messages have static parts that are

configured in the Constants sheet of the Config.xlsx file.

Other than the regular log fields included in messages generated by robots (e.g., robot

name and timestamp), the REFramework uses additional custom log fields to add more

data about each transaction. When retrieving a new transaction to be processed, in the

file GetTransactionData.xaml, it is possible to define values for the custom log fields

TransactionId, TransactionField1 and TransactionField2.

Figure 4 - Addition and Removal of Custom Log Fields.

Figure 4 shows part of the SetTransactionStatus.xaml file, which adds custom fields to

log messages using the Add Log Fields activity. Note that, after the Log Message activity

is used, the added fields are removed using the Remove Log Fields activity. This

guarantees that the custom fields previously defined are used just inside the desired log

message activity and not in all the following ones, as well.

Although the use of custom log fields is optional, they can be used to include extra

information about transactions, which might be helpful during debugging and

troubleshooting.

Additionally, these custom log fields can be leveraged for business reporting purposes.

For example, in a process which considers invoices as transactions, the invoice number

can be assigned to the TransactionId field, the invoice date to TransactionField1 and the

total amount to TransactionField2. By using logs generated with such data, it is possible

to construct visualizations displaying the days in a month in which a large number of

invoices were processed or showing the aggregated total amount processed during a

certain period of time (Figure 5).

Figure 5 - Example of Reporting Using Custom Log Fields.

Note that sensitive data should not be included in logs, since they are not encrypted and

might lead to privacy issues if leaked.

Exception Handling and Recovery

The REFramework offers a robust exception handling scheme and can automatically

recover from failures, update statuses of transactions and gracefully end the execution

in case of unrecoverable exceptions. This feature is closely related to the logging

capabilities, so that all information about exceptions is properly logged and available for

analysis and investigation.

Exceptions that happen during the framework’s execution are divided into two

categories:

• Business Exceptions: This kind of exception is implemented by the class

BusinessRuleException and it should be thrown when there are problems

related to the rules of the business process being automated. For example, if a

process expects to receive an email with an attachment, but the attachment

does not exist, the process would not be able to continue. In this case, a

developer can use the Throw activity to throw a BusinessRuleException, which

indicates that there was a problem that prevented the rules of the process from

being followed. Note that BusinessRuleExceptions must be explicitly thrown by

the developer of the workflow, and they are not automatically thrown by the

framework or by the activities.

• System Exceptions: If an exception is not related to the rules of the process itself,

it is considered a system exception. Examples of system exceptions include an

activity that timed-out due to slow network connection or a selector not

found because of a browser crash.

Depending on the category of exception, business exception or system exception, the

REFramework decides whether the transaction should be retried or not. In the case of a

business exception, the transaction is not automatically retried, since issues related to

business rules usually require human intervention. On the other hand, in the case of a

system exception, the error might have been caused by a temporary problem and

retrying the same transaction can make it succeed without human intervention.

Note that both business exceptions and system exceptions are concepts that also exist

in Orchestrator under the names Business Exceptions and Application Exceptions. In

fact, if the source of transactions is an Orchestrator queue, then the number of retries

in the case of system exceptions can be set directly on Orchestrator. If the Orchestrator

is not used, the configuration for retries is done in the Config.xlsx file, as mentioned in

Settings section.

To avoid consuming all queue items when a persistent error occurs (e.g. application is

unavailable), the constant MaxConsecutiveSystemExceptions should be used. If the

MaxConsecutiveSystemExceptions setting is different than 0 and the number of

consecutive system exceptions is reached, the job is stopped. To enable this feature, the

value of the constant should be set to an integer greater than 0.

By default, all Exceptions are handled by the REFramework, resulting in the Job being

marked as Successful even when an exception occurs in the Init State. However, if the

value of ShouldMarkJobAsFaulted constant is changed to TRUE and an error occurs in

the Initialization state or the MaxConsecutiveSystemExceptions is reached, the job is

marked as Faulted. This enables organizations to make use of the Media Recording

feature from Orchestrator to easily identify the error cause.

Architecture

The REFramework is implemented as a state machine workflow, which is a kind of

workflow that defines states. Each state represents a particular circumstance of the

execution. Depending on certain conditions, the execution can transition from one state

to another.

States

The states of the REFramework can be seen in Figure 6, and they are detailed as follows:

• Initialization: Read the configuration file and initialize the

applications used in the process. If the initialization is successful, the

execution moves to the Get Transaction Data state; in case of failure, it moves

to the End Process state. If a system exception occurs during the processing of a

transaction, the framework attempts to recover from the error by closing all

applications used and returning to the Initialization state so the applications can

be initialized again.

• Get Transaction Data: Get the next transaction to be processed. If there is no

data to be processed or any errors occur, the execution goes to the End Process

state. If a new transaction is successfully retrieved, it is processed in the Process

Transaction state.

• Process Transaction: Process a single transaction. The result of the processing

can be Success, Business Exception or System Exception. In the case of a System

Exception, the processing of the current transaction can be automatically

retried. If the result is a Business Exception, the transaction is skipped, and the

framework tries to retrieve a new transaction in the Get Transaction Data state.

The execution also returns to the Get Transaction Data state to retrieve a new

transaction if the processing of the current one is successful.

• End Process: Finalize the process and close all applications used.

Figure 6 - State Machine with the States of the REFramework.

Table 2 - Workflows Invoked in States.

State Invoked Workflows

Initialization
InitAllSettings.xaml

KillAllProcesses.xaml

InitAllApplications.xaml

Get Transaction Data GetTransactionData.xaml

Process Transaction Process.xaml

SetTransactionStatus.xaml

• RetryCurrentTransaction.xaml

• TakeScreenshot.xaml

• CloseAllApplications.xaml

• KillAllProcesses.xaml

End Process
CloseAllApplications.xaml

KillAllProcesses.xaml

Each state invokes one or more workflows, which are listed in Table 2 and detailed in

the section Workflows.

Shared Variables

Table 3 shows the variables declared in the Main.xaml file and which are passed as

arguments to the workflows invoked in different states.

One important variable that is passed to almost all the workflows invoked in Main.xaml

is the Config dictionary. This variable is initialized by the InitAllSettings.xaml workflow

in the Initialization state, and it contains all the configuration declared in the Config.xlsx

file. Since it is a dictionary, the values in Config can be accessed by its keys, like

Config(“Department”) or Config(“System1_URL”). Note that, although it is present in

the Config.xlsx file, the Description of each value is not included in the dictionary.

Table 3 - Shared Variables.

Name Default Type Description

TransactionItem QueueItem Transaction item to be

processed. The type of this

variable can be changed to

match the transaction type

in the process. For example,

when processing data from

a spreadsheet that is read

into a DataTable, this type

can be changed to DataRow

(refer to section

Practical Example 2: Using

Tabular Data for a sample).

Taking the scenario in which

the transactions are paths to

image files to be processed,

the type of the variable can

be set to String.

SystemException Exception Used during transitions

between states to represent

exceptions other than

BusinessRuleException.

BusinessException BusinessRuleException Used during transitions

between states and

represents a situation that

does not conform to the

rules of the process being

automated.

TransactionNumber Int32
Sequential counter of

transaction items.

Config Dictionary(Of String,

Object)

Dictionary structure to store

configuration data of the

process (settings, constants

and assets).

RetryNumber Int32
Used to control the number

of attempts when it comes to

retrying the transaction, in

case of a system exception.

TransactionField1 String
Optionally used to include

additional information about

the transaction item.

TransactionField2 String
Optionally used to include

additional information about

the transaction item.

TransactionID String Used for information and

logging purposes. Ideally, the

ID should be unique for each

transaction.

TransactionData DataTable Used in case transactions are

stored in a DataTable, for

example, after being

retrieved from a

spreadsheet.

ConsecutiveSystemExceptions Int32 Used to control the number

of consecutive system

exceptions allowed before

stopping the job.

Workflows

This section details the workflows that compose the REFramework, including overview,

purpose and arguments. When applicable, it is also mentioned what parts need to be

modified if the transaction type is not QueueItem.

Framework\InitAllSettings.xaml

This workflow, located in the Framework folder, initializes, populates and outputs a

configuration dictionary, Config, to be used throughout the project. Settings and

constants are read from the local configuration file, Data\Config.xlsx, and assets are

fetched from Orchestrator. Asset values overwrite settings and constant

values if they are defined with the same name. Table 4 shows the

arguments used by

InitAllSettings.xaml.

Table 4 - Arguments of InitAllSettings.xaml.

Argument Description Default Value

in_ConfigFile
Path to the configuration file that

defines settings, constants and

assets.

“Data\Config.xlsx”

in_ConfigSheets
Names of the sheets corresponding

to settings and constants in the

configuration file.

{"Settings","Constants"}

out_Config
Dictionary structure to store

configuration data of the process

(settings, constants and assets).

No default value

If an exception occurs during the execution of this workflow - for example, if the

configuration file is not found, it is caught by the Try Catch activity in the Initialization

state and the execution transitions into the End Process state.

Framework\KillAllProcesses.xaml

After the initialization of settings, the framework can perform actions to make sure that

the system is in a clean state before the main process starts. This can be done by using

the Kill Process activity, which forces the termination of a Windows process

representing an application used in the business process. Note that killing processes

might have undesirable outcomes, such as losing unsaved changes to files. The

KillAllProcesses.xaml workflow, located in the Framework folder, can be used to

implement such cleanup steps.

Also, despite the name of this workflow, it is not mandatory to always kill all the

processes used, and other steps might be more appropriate to return the system to a

clean state. Ultimately, such steps depend on the requirements of the business process.

Table 5 - Argument of InitAllApplications.xaml.

Argument Description Default Value

in_Config
Dictionary structure to store

configuration data of the process

(settings, constants and assets).

No default value

Framework\InitAllApplications.xaml

The InitAllApplications.xaml workflow, located in the Framework folder, can be used to

initialize applications operated during the execution of the process. It can contain

activities like Open Application activities and Open Browser, or it can also invoke other

workflows that implement actions like login and authentication.

Table 5 shows that this workflow receives only one argument, the configuration

dictionary, Config, which can contain data necessary to start certain applications (e.g.,

URL of a web application).

Framework\GetTransactionData.xaml

This workflow, located in the Framework folder, attempts to retrieve a transaction item

from a specified source (e.g., Orchestrator queues, spreadsheets, databases, mailboxes

or web APIs).

If there are no transaction items remaining to be processed, the argument

out_TransactionItem is set to Nothing, which leads to the End Process state. All

arguments used are detailed in Table 6.

For cases in which there is only a single transaction (i.e., a linear process), the developer

should add an If activity to check whether the argument in_TransactionNumber has the

value 1 (meaning it is the first and only transaction) and assign the transaction item to

out_TransactionItem. In such cases, for any other value of in_TransactionNumber,

out_TransactionItem should be set to Nothing (Figure 7).

Table 6 - Arguments of GetTransactionData.xaml

Argument Description Default Value

in_TransactionNumber
Sequential counter of transaction

items.

No default value

in_Config
Dictionary structure to store

configuration data of the process

(settings, constants and assets).

No default value

out_TransactionItem Transaction item to be processed. No default value

out_TransactionField1
Optionally used to include additional

information about the transaction

item.

No default value

out_TransactionField2
Optionally used to include additional

information about the transaction

item.

No default value

out_TransactionID
Used for information and logging

purposes. Ideally, the ID should be

unique for each transaction.

No default value

io_TransactionData
Used in case transactions are stored

in a DataTable, for example, after

being retrieved from a spreadsheet.

No default value

Figure 7 - Configuration of GetTransactionData.xaml in Case of Linear Processes.

Table 7 - Arguments of Process.xaml

Argument Description Default Value

in_TransactionItem Transaction item to be processed. No default value

in_Config
Dictionary structure to store configuration

data of the process (settings, constants and

assets).

No default value

If there are multiple transactions from a source other than an Orchestrator queue, use

the argument in_TransactionNumber as an index to retrieve the correct transaction to

be processed. If there are no more transactions left, it is necessary to set

out_TransactionItem to Nothing, thus leading to the end of the process.

The GetTransactionData.xaml workflow assumes the use of Orchestrator queues by

default, and the first activity tries to retrieve a new transaction item from an

Orchestrator queue. This situation is illustrated by the example in section Practical

Example 1: Using Queues.

If Orchestrator queues are not used, replace the Get Transaction Item activity with the

appropriate logic to retrieve the transaction items. For example, if the transactions are

rows from a DataTable, the row corresponding to the current transaction is retrieved at

this point. Section Practical Example 2: Using Tabular Data offers an example of this

case.

Lastly, note that this workflow contains an optional step that can be used to include

more information about a transaction item, and it is used mainly for logging and

visualization purposes. For example, if the transaction items for a given process are

invoices, then out_TransactionID can be the invoice number, out_TransactionField1 can

be the invoice date and out_TransactionField2 can be the invoice amount. The Logging

section offers more information about logging with custom log fields.

Framework\Process.xaml

The Process.xaml workflow is used to invoke the major steps of the business process,

which are commonly implemented by multiple sub-workflows. Its main argument is

in_TransactionItem, which represents the piece of data to be processed. The default

type for the argument in_TransactionItem is QueueItem (Table 7), and it should be

changed in case other types are used (e.g., DataRow, String or MailMessage).

If a BusinessRuleException is thrown during the processing, the current transaction is

skipped. If another kind of exception occurs, the current transaction is retried according

to the retry configurations.

Framework\SetTransactionStatus.xaml

The SetTransactionStatus.xaml workflow, located in the Framework folder, sets and

logs each transaction's status. There can be three possible statuses: Success, Business

Exception and System Exception.

A business exception, represented by a BusinessRuleException object, characterizes an

irregular situation according to the process's rules and prevents the transaction from

being processed. The transaction is not retried in this case, since the result would be the

same until the problem that caused the exception has been solved. For example, it can

be considered a business exception if a process expects to read an email's attachment,

but the sender did not attach any file. In this case, immediate retries of the transaction

would not give a different result.

On the other hand, system exceptions are characterized by exceptions whose types are

different than BusinessRuleException. When this kind of exception happens, the

transaction item can be retried after closing and reopening the applications involved in

the process. The idea behind this behavior is that the exception was caused by a problem

in the applications being automated (e.g., a system that freezes), which might be solved

by restarting them.

If an Orchestrator queue is the source of transactions, the Set Transaction Status activity

is used to update their status. In addition, the retry mechanism is also managed by

Orchestrator.

If Orchestrator queues are not used, the status can be set, for example, by writing to a

specific column in a spreadsheet. In such cases, the retry mechanism is managed by the

framework itself and the number of retries is defined in the configuration file.

At the end of the SetTransactionStatus.xaml workflow, io_TransactionNumber is

incremented, which makes the framework get the next transaction to be processed.

Table 8 provides details about other arguments of SetTransactionStatus.xaml.

Table 8 - Arguments of SetTransactionStatus.xaml

Argument Description Default Value

in_Config
Dictionary structure to store

configuration data.

No default

value

in_SystemException Exception variable that is used

during transitions between

states.

No default

value

in_BusinessException Exception variable that is used

during transitions between

states.

No default

value

in_TransactionItem
Transaction item to be

processed.

No default

value

io_RetryNumber This variable controls the

number of attempts of retrying

the process in case of system

error.

No default

value

io_TransactionNumber
Sequential counter of

 transaction items.

No default

value

in_TransactionField1
Allow the optional addition of

information about the

transaction item.

No default

value

in_TransactionField2
Allow the optional addition of

information about the

transaction item.

No default

value

in_TransactionID Transaction ID used for

information and logging

purposes.

No default

value

io_ConsecutiveSystemExceptions This variable controls the number

of consecutive system

exceptions.

No default

value

Table 9 - Arguments of RetryCurrentTransaction.xaml

Argument Description Default Value

in_Config
Dictionary structure to store

configuration data of the process

(settings, constants and assets).

No default value

io_RetryNumber
Used to control the number of attempts

of retrying the transaction processing in

case of system exceptions.

No default value

io_TransactionNumber
Sequential counter of

 transaction items.

No default value

in_SystemException
Used during transitions between states

to represent exceptions other than

business exceptions.

No default value

in_QueryRetry
Used to indicate whether the retry

procedure is managed by an

Orchestrator queue.

No default value

Framework\RetryCurrentTransaction.xaml

Table 9 provides details about the arguments of RetryCurrentTransaction.xaml, located

in the Framework folder. This workflow manages the retrying mechanism for the

framework, and it is invoked in SetTransactionStatus.xaml when a system exception

occurs.

The retrying method is based on the configurations defined in Config.xlsx. As mentioned

in the Settings section, if the MaxRetryNumber constant is zero, the management of

retries is handled by Orchestrator. If MaxRetryNumber is greater than zero, the

management of retries is handled locally by the framework.

Table 10 - Arguments of TakeScreenshot.xaml

Argument Description Default Value

in_Folder
Path to the folder where the screenshot

should be saved.

No default value

io_FilePath
Optional argument that specifies the

path and the name of the screenshot to

be taken.

No default value

Framework\TakeScreenshot.xaml

This workflow, located in the Framework folder, captures a screenshot of the whole

screen and saves it with the PNG extension in a folder specified by the argument

in_Folder (Table 10).

TakeScreenshot.xaml is invoked when there are exceptions during the processing of a

transaction. Although it is used for all processes by default, this feature is particularly

helpful when debugging issues that happen during the execution of unattended

processes, providing clues even when there is no human supervising the robot and

seeing the problem happen live.

If an Orchestrator queue is used and a transaction item fails due to a System Exception,

the path of the screenshot is saved in the Transaction Item Details.

Framework\CloseAllApplications.xaml

This workflow, located in the Framework folder, does the necessary procedures for

ending the process and closing the used applications. Similar to

OpenAllApplications.xaml, activities can be placed directly in this workflow or,

preferably, sub-workflows can be invoked to perform more complex steps, such as

logging out of a system.

Using the Framework

The REFramework is available as a UiPath Studio project template (Figure 8), and when

creating a new project starting from the REFramework template, it will automatically

include all the files explained above.

Figure 8 - Template Menu in UiPath Studio's Home Screen.

Changes to Framework Files

After the project is created, the following files need to be modified according to the

requirements of the process to be automated.

Data\Config.xlsx

Other than adding the necessary settings, constants and assets that depend on the

process, make the following modifications:

1. Change the value of the logF_BusinessProcessName setting to match the name

of the process. This value is used for logging purposes, and it is going to be

included in all the log messages generated by the framework when this process

is executed.

2. If the source of transactions is an Orchestrator queue, change the value of the

OrchestratorQueueName setting to match the name of the queue as defined in

Orchestrator. If the process does not use a queue, then it is safe to delete this

row and change the value of MaxRetryNumber in the Constants sheet to an

integer greater than zero. This indicates the number of times a robot should retry

a transaction that fails with a system exception (refer to the Settings section for

details).

3. If the source of transactions is an Orchestrator queue and the

Orchestrator folder of the queue is different than the one where the

process will be running, specify the Orchestrator folder of the queue in the

OrchestratorQueueFolder setting.

Figure 9 - Updating Arguments of Invoked Workflows.

Main.xaml

First, set the type of the TransactionItem variable according to the type of the process

transaction. The default type is QueueItem, but it can be changed, for example, to

DataRow in case rows are being read from an Excel file or to MailMessage in case emails

are retrieved from an email account.

If queues are used, there is no need for further modifications. However, if the type is

changed, the following workflows should also be updated, since they expect the variable

TransactionItem to be of type QueueItem: GetTransactionData.xaml, Process.xaml and

SetTransactionStatus.xaml. Section Practical Example 2: Using Tabular Data provides

an example of how to do such updates.

After the above workflows are adjusted, it is also necessary to update the arguments

passed by the corresponding Invoke Workflow File activities: GetTransactionData.xaml

is invoked in the Get Transaction Data state, and both Process.xaml and

SetTransactionStatus.xaml are invoked in the Process Transaction state. Updating

arguments can be done by clicking the Import Arguments button of the Invoke Workflow

File activity and entering the variables that are passed to the adjusted arguments, as

shown in Figure 9.

Framework\GetTransactionData.xaml

If Orchestrator queues are used, the transaction retrieval is handled by the Get

Transaction Item activity included by default, and it is not necessary to make any

modifications to the GetTransactionData.xaml workflow.

Figure 10 - Configuration for Processes with a Single Transaction.

If transactions are of types other than QueueItem, change the type of the

out_TransactionItem argument to match the process’s transaction type (for example,

DataRow or MailMessage). To define a new data source, replace the first activity of this

workflow, Get Transaction Item, with appropriate data retrieval. For example, use the

Read Range activity to retrieve data from a spreadsheet and save it to the

io_TransactionData argument. After that, make sure that the new type of

out_TransactionItem is reflected in the Invoke Workflow File activity that invokes this

workflow in the Get Transaction Data state of Main.xaml.

Once the data source is defined, it is necessary to include steps to get transaction items.

For cases in which there is only a single transaction, check whether the argument

in_TransactionNumber has the value 1 (meaning it's the first and only transaction) and

assign the transaction item to out_TransactionItem. For any other value of

in_TransactionNumber, out_TransactionItem should be set to Nothing (Figure 10).

If there are multiple transactions, use the argument in_TransactionNumber as an index

to retrieve the correct transaction to be processed. If there are no more transactions

left, it is necessary to set out_TransactionItem to Nothing, thus ending the process

(Figure 11).

Figure 11 - Configuration for Transactional Process (Multiple Transactions).

Figure 12 - Configuration of Custom Log Fields.

Optionally, it is possible to add information about the transaction item using the Assign

activities in the sequence named Add transaction information to log fields at the end of

this workflow. For example, for creating reports about an invoice processing

automation, one might use out_TransactionID to store invoice number,

out_TransactionField1 to store invoice date and out_TransactionField2 to store the

total amount, as mentioned in section Logging and illustrated in Figure 12.

Framework\Process.xaml

No special changes need to be made to Process.xaml if Orchestrator queues are used.

Each transaction item is accessible in this workflow via the argument

in_TransactionItem. For instance, in an invoice processing automation

project, in_TransactionItem.SpecificContent("InvoiceNumber") can be

used to retrieve the invoice number and

in_TransactionItem.SpecificContent("TotalAmount") may be used to obtain the total

amount.

If Orchestrator queues are not used, set the type of the in_TransactionItem argument

to match the type defined for the variable TransactionItem in Main.xaml. After that,

make sure that the new type of in_TransactionItem is reflected in the Invoke Workflow

File activity that invokes this workflow in the Process Transaction state of Main.xaml.

Framework\SetTransactionStatus.xaml

As mentioned in section Framework\SetTransactionStatus.xaml, this workflow is called

after the Process.xaml workflow is executed, and it sets the status of the transaction

according to the result of the processing step.

If the process’s data source is an Orchestrator queue, the status of the queue item is

updated by the Set Transaction Status activity by default and no further changes are

necessary.

For processes that do not use an Orchestrator queue, in addition to adjusting the type

of the in_TransactionItem argument, the appropriate steps must be implemented to set

the transaction status. After that, make sure that the new type of in_TransactionItem is

reflected on the Invoke Workflow File activity that invokes this workflow in the Process

Transaction state of Main.xaml.

If it is not desirable to track statuses of transactions, then it is possible to keep the type

of the in_TransactionItem argument as it is (i.e., QueueItem) and simply pass the value

Nothing to the corresponding argument of the Invoke Workflow File activity in the

Process Transaction state of Main.xaml, as illustrated by Figure 13.

Figure 13 - Configuring Arguments when Invoking SetTransactionStatus.xaml.

Figure 14 - Details of a Queue Item from the "Invoices" Queue.

Practical Example 1: Using Queues

For the first practical example, consider that an Orchestrator queue named Invoices is

created and populated with data about invoices, such as invoice number, date and total

amount (Figure 14).

Figure 15 - Updated Statuses of Queue Items.

As detailed in the Changes to Framework Files section, the processing of invoices can

be implemented by the following steps:

1. In the Settings sheet of the file Data\Config.xlsx, change the value of the

OrchestratorQueueName parameter to Invoices and the value of

logF_BusinessProcessName to InvoiceProcessingSample.

2. In the InitAllApplications.xaml file, invoke workflows that implement opening

and logging into applications used in the process, such as an invoice registration

system.

3. In CloseAllApplications.xaml, invoke workflows that carry out the logging out

and the closing of the used applications. Optionally, use the

KillAllProcesses.xaml file for additional cleanup steps.

4. In Process.xaml, invoke the necessary workflows to implement the actual invoice

processing steps, like accessing the appropriate screens of the registration

system and using activities like Click and Type Into to register each invoice.

Note that in case an Orchestrator queue is used as data source, only a few modifications

are necessary to be implemented into the framework. It automatically communicates

with the queue set in the configuration file, retrieves one transaction item at a time and

updates the status of the item according to the result of the processing (Figure 15).

Figure 16 - Invoice Data in a Spreadsheet.

Figure 17 - Settings sheet in Config.xlsx.

Practical Example 2: Using Tabular Data

The second example uses invoice data stored in an Excel spreadsheet, as shown in Figure

16. Each row of the spreadsheet contains data about a single invoice, so the data should

be loaded into the TransactionData variable and the type of TransactionItem should be

changed to DataRow. To do so, make the following changes:

1. Similar to the first example, in the Settings sheet of the file Data\Config.xlsx,

change the value of logF_BusinessProcessName to InvoiceProcessingSample.

However, since the data source is not an Orchestrator queue, delete the row

corresponding to OrchestratorQueueName. Add a new setting parameter by

using SampleDataFilepath as the name and, as the value, specify the path for

the input Excel file that has data about invoices to be processed, such as

Data\Input\InvoiceSampleData.xlsx (Figure 17).

Figure 18 - Initializing Data Source (io_TransactionData).

2. In the Constants sheet of the file Data\Config.xlsx, change the value of

MaxRetryNumber to an integer greater than zero. As detailed in the Settings

section, this value indicates the number of times the processing should be retried

in case of system exceptions. For this example, change it to 2.

3. In the Process.xaml workflow, change the type of the argument

in_TransactionItem to DataRow instead of QueueItem. Also, invoke the

necessary workflows to implement the actual invoice processing steps, such as

accessing the appropriate screens of the registration system and using activities

like Click and Type Into to register each invoice.

4. In GetTransactionData.xaml, other than changing the type of

out_TransactionItem to DataRow, delete the existing Get Transaction Item

activity, since this example does not use Orchestrator queues. Two checks are

necessary to correctly retrieve transaction items in this case, and they are

implemented as follows:

a. Add an If activity that checks whether the data source was initialized with

the condition io_TransactionData Is Nothing (Figure 18). If it was not

initialized, read the spreadsheet from the designated Excel file by using

the Read Range activity and the path defined in the configuration file:

in_Config(“SampleDataFilepath”).ToString.

b. After that, it is necessary to implement the logic to retrieve one row each

time the GetTransactionData.xaml is executed. To do so, add another If

activity and use the condition io_TransactionData.Rows.Count >=

in_TransactionNumber, which verifies whether there are rows to be

processed. If there are unprocessed rows, use an Assign activity to set the

appropriate row to be the current transaction item:

io_TransactionData.Rows(in_TransactionNumber - 1). Note that the

argument in_TransactionNumber is used to track the row currently being

processed. If there is no unprocessed row left, set out_TransactionItem

to Nothing (Figure 11). This action is necessary to prevent the framework

from attempting to retrieve new transactions.

5. Make the following modifications to the SetTransactionStatus.xaml file so that

the statuses of transactions are tracked in the Processed column (Figure 16) of

the input spreadsheet. First, change the type of the argument

in_TransactionItem to DataRow instead of QueueItem and implement the

following steps to update the Processed column of the input Excel file with the

result of the processing:

a. In the sequence called Success, delete the If activity named If

TransactionItem is a QueueItem (Success) and add a Write Cell activity

instead. In the properties of this activity, assign “Yes” to the Text

property, in_Config("SampleDataFilepath").ToString to the

WorkbookPath property and "D"+(io_TransactionNumber+1).ToString

to the Cell property (Figure 19). “D” refers to the Processed column and

io_TransactionNumber+1 skips the table header and writes to the

correct row.

Figure 19 - Configuration of Write Cell (Success).

b. Similar to the previous step, in the sequence called Business Exception,

delete the If activity named If TransactionItem is a QueueItem (Business

Exception) and add a Write Cell activity instead. The values of the

properties of this activity are the same as the success case, except that

the property Text should have the value “No (Business Rule Exception)”.

c. Finally, in the sequence called System Exception, delete the If activity

named If TransactionItem is a QueueItem (System Exception) and add

a Write Cell activity instead. Once again, use the same values for the

properties set in case of success, except for the Text property, which

should be set to "No (System Exception).".

6. In Main.xaml, change the type of the variable TransactionItem to

DataRow instead of QueueItem. Notice that this change raises alerts in

different parts of the workflow, indicating that the new type is not compatible

with the type of the arguments previously defined in the Invoke Workflow File

activities. Click the Import Arguments button of the following Invoke Workflow

File activities and set the TransactionItem variable to the corresponding

argument:

a. Invoke GetTransactionData workflow in the Get Transaction Data state.

b. Invoke Process workflow in the Process Transaction state (Try block of

Try Catch activity).

c. Invoke SetTransactionStatus workflow in the Process Transaction state

(Try and Catch blocks of Try Catch activity).

7. In the InitAllApplications.xaml file, invoke workflows that implement opening

and logging into applications used in the process, such as an invoice registration

system.

8. In CloseAllApplications.xaml, invoke workflows that perform the logout and the

closing of the used applications. Optionally, use the KillAllProcesses.xaml file for

additional cleanup steps.

9. In Process.xaml, invoke the necessary workflows to implement the actual invoice

processing steps, like accessing the appropriate screens of the registration

system and using activities like Click and Type Into to register each invoice.

To summarize, the steps above read data about invoices from an Excel file and use each

row of the file as a transaction. After processing a transaction, the framework updates

the Processed column according to the result of the processing (i.e., success, business

exception and system exception).

Lastly, note that the same steps can be applied for other types of transactions, such as

emails (MailMessage) and paths to files (String).

Test Framework

The REFramework also includes a testing feature that makes it easier to do automatic

testing of workflows. Instead of testing them one by one and checking the results

manually, it is possible to specify the predicted outcome of a workflow (i.e., successful

execution, business exception and system exception) and see whether the actual results

matched the expected results.

The TestSuite integration with REFramework provides an easy method of

implementing unit testing of REFramework components.

It contains several files related to testing different parts of the framework:

Tests\Tests.xlsx - an Excel file that contains a sheet: Tests. In the Tests sheet, the

developer will write the workflow paths of the workflows to be tested and the expected

exception - SystemException, BusinessRuleException or Success.

After running GeneralTestCase.xaml, there is going to be a clear result of comparing the

expected result with the actual result after passing through this list of workflows. There

are two possible statuses - PASS or FAIL for each workflow tested. The status is PASS if

the actual exception caught is the one previously defined in the Tests sheet and FAIL

otherwise.

We identified the need to test each part of the REFramework individually with the right

context set, therefore a set of unit tests per part of process were created:

Tests\InitAllSettingsTestCase.xaml - Verifies if the Config dictionary was created and

contains information. May verify if a certain key is present in dictionary (e.g.,

MaxRetryNumber)

Tests\InitAllApplicationsTestCase.xaml - Having the Config set, we can now test if the

initialization of applications works as expected. The Verify Control Attribute should be

used to check if an element that is supposed to be on the screen after the initialization

of the applications is indeed there.

Tests\ProcessTestCase.xaml - Having the Config set and applications open, this

workflow should be modified such as the TransactionItem is created/obtained from a

test queue and provide it as input for the processing part. Also, an output argument

should be returned if the processing part worked as expected, otherwise it will just

assume that if the workflow did not throw an exception, the test case should pass.

Tests\MainTestCase.xaml - This test case assumes that the process has a reporting

system in place. It should be configured to verify if the obtained output is the same as

the expected output.

The Test Cases presented above should be treated as samples. Please modify them and

add new ones as required by your process.

UiPath team highly recommends having a CI/CD pipeline in place for each project.

Distribution and Support to Extensions

The REFramework is available under the MIT License and distributed as a template in

UiPath Studio or via https://github.com/UiPath-Services/StudioTemplates.

Regarding the adaptation of the framework to particular use cases and transaction

types, it is encouraged that customers and partners understand the steps for extensions

and implement such modifications to better suit their needs. For an example of

extension using spreadsheet data, refer to section Practical Example 2: Using Tabular

Data. Alternatively, templates based on the REFramework can be downloaded from the

UiPath Marketplace (https://marketplace.uipath.com/).

