UiPath REFramework Manual

Author: Mihai Dunareanu
Peer reviewer: Andrei Cioboata
Revision 1.0

Table of contents

About the framework and its purpose
Understanding a business process

Introduction
About state machines

Framework component functions

Global Variables

Init State
InitAllSettings.xaml workflow
InitAllApplications.xaml workflow

Init Transitions

Get Transaction Data State
GetTransactionData.xaml workflow

Get Transaction Data Transitions

Process Transaction State
Process.xaml workflow
SetTransactionStatus.xaml workflow
TakeScreenshot.xaml workflow
CloseAllApplications.xaml workflow
KillAlIProcesses.xaml workflow

Process Transaction Transitions

End Process State
CloseAllApplications.xaml workflow
KillAlIProcesses.xaml workflow

End Process Transitions

Additional Functions
GetAppCredentials.xaml workflow

Logging
Logged Messages
Custom Log Fields
Field Descriptions and explanations

Getting started, examples
Deploying the framework
Defining the scope of the process component and preparing the framework
Usage example 1
Changes to GetTransactionData.xaml
Changes to Process.xaml

UiPath_ REFramework manual

o NN o b

10
10
11
12
12
13
14
14
15
17
17
17
18
19
19
19
19
20
20

21
22
24
25

27
27
27
29
29
31

Changes to InitAllApplications.xaml
Changes to CloseAllApplications.xaml
Changes to KillAllApplications.xaml
Usage example 2

Changes to GetTransactionData.xaml
Changes to Process.xaml

Changes to InitAllApplications.xaml
Changes to CloseAllApplications.xaml
Changes to KillAllApplications.xaml

Glossary of terms (marked in italics)

UiPath_ REFramework manual

31
32
32
32
32
33
33
33
33

34

About the framework and its purpose

The framework is meant to be a template that helps the user design processes that offer, at a
barebones minimum, a way to store, read, and easily modify project configuration data, a robust
exception handling scheme and event logging for all exceptions and relevant transaction
information.

Because logs generated by each process are a vital component of its report generation, the
framework logs messages at each relevant step toward solving a business transaction and
sends those logs to the Orchestrator server. This is turn can be connected to the ELK stack
(Elasticsearch, logstash, kibana platform) which enables data storage and countless ways of
representing the data.

When we build tools, we try to first define their purpose and, in this scenario, the purpose of our
framework is to solve a collection of business transactions. Notice i did not write business
process, as all but the most simple business processes are typically composed of multiple,
distinct in scope and in purpose, collections of business transactions. Thus, let us henceforth
call such a collection of relatable business transactions a business process component, a part
of a complete business process.

Thus, we could define a business process component as the sum of actions by which the data
needed for a set of transactions is obtained, processed, and is input into or out of an IT
resource.

Such a component needs to be easily deployed to the machines it will run on (Orchestrator
server maintains versioning and easy deployment across all runtime machines), needs to be
scalable and needs to be able to communicate it's output data with external mediums so that
other components of the business process may pick up the work where it left off. Such a
medium could be a shared folder, a data server, ftp server, email, Orchestrator server queue
e.t.c.

UiPath_ REFramework manual

Understanding a business process

Take the following business process: a user has to check fuel prices using web resource 1
(external company website) weekly and update a file with the new values. Another user will then
utilize web resource 2 (internal company website) to obtain information about distances traveled
by vehicles in company service and correlates this information with the new costs of fuel. He
then uses web resource 3 (external company website) to pay for the deliveries.

In this example, we could use three business process components:

e The first, a weekly one, would read data from resource 1 to check and update the fuel
price file.

e The second would download information about distances from resource 2 and reference
the values obtained by the previous sub-process to filter and further refine that data.
Once done, it would save the data.

e The third component would read the information produced by process 2 use it to input
data into resource 3.

This business process could, of course, be expressed as the sum of two business process
components instead of three, for example by grouping sub-processes 1 and 2 together.

And, of course, it could be also broken up, for example sub-process 2 might be broken up into
two further pieces, one that downloads information from resource 2 and another that reads both
resource 1 and 2 information and processes it.

This technique of splitting a problem into easily definable, simple components is a great tool in
solving any business process, ho matter how complex.

It also helps deal with a fundamental aspect of reality, time.

To see exactly how, let’'s make a change to the business process described above: after the file
containing fuel prices was updated a user would need to confirm the validity of the values by
opening the file and signing it.

This means that before we utilize web resource 2 to obtain information we first need to wait for
the fuel cost file to be signed by a supervisor.

You can easily see how, If we implemented this using 3 components, the change would be
small, as we would need to only add one check in subprocess number two: is the file signed. If it
is, proceed. If it is not, exit and try again later. This also means that the robot is free to process
other tasks.

UiPath_ REFramework manual

If, on the other hand, we had grouped components 1 and 2 together, we would have to
needlessly refetch data or implement an additional check on the fuel file, and this is obviously
not desirable.

We must also acknowledge that business practices do change over time, making small changes
like this one likely over long periods of time.

UiPath_ REFramework manual

Introduction

About state machines

As you know, UiPath Studio has 3 types of data flow representations: sequence, flowchart and
state machine.

While the framework does contain all 3 data flow representations, we chose the state machine
for the main body of the program because it provided a cleaner solution to representing our
desired dataflow.

This is how wikipedia defines a finite state machine:

“A finite-state machine (FSM) or finite-state automaton (FSA, plural: automata), finite
automaton, or simply a state machine, is a mathematical model of computation. It is an abstract
machine that can be in exactly one of a finite number of states at any given time. The FSM can
change from one state to another in response to some external inputs; the change from one
state to another is called a transition. An FSM is defined by a list of its states, its initial state, and
the conditions for each transition.”

Basic rules when using a state machine:
e Since the system can be in only one state at a time, at least one transition condition from
a given state to another must become true either by generating a condition in the code
running inside the state, an external condition, or a combination of both.

e The transition conditions from each state must be exclusive (two transitions cannot be
true at the same time, thus allowing two possible paths of exit from a state).

e Another rule that is agreed upon is that no heavy processing must be done in the
Transition actions. All processing should be done inside the state.

Going back to the first chapter, the problems we needed to solve with this template were:
1. Store and read project configuration data
2. Separate IT resource start, usage and end
a. For all retried transactions, restart the IT resource
3. Implement a robust exception handling and transaction retry scheme
a. Capture exceptions by type
b. Use exception type to retry transactions that failed with an application exception
4. Capture and transmit logging for all exceptions and relevant transaction information

UiPath_ REFramework manual

Framework component functions

Table 1 shows the calling structure of the framework. That is, which workflows are called, the
order in which they are called, and the State of the main state machine where you can find the
workflow invoke.

Table 1 - Component call tree structure

Component file names and locations State where it is called
Main.xaml
Framework\InitAllSettings.xaml Init
Framework\KillAllProcesses.xaml Init
Framework\InitAllApplications.xaml Init
Framework\GetTransactionData.xaml GetTransactionData
Process.xaml Process
Framework\SetTransactionStatus.xaml Process
Framework\TakeScreenshot.xaml Process
Framework\CloseAllApplications.xaml Process
Framework\KillAllProcesses.xaml Process
Framework\CloseAllApplications.xaml End Program
Framework\KillAllProcesses.xaml End Program

Aside from these, there are additional workflows included but not called by default.
You can read about them in the “Additional functions” chapter.

UiPath_ REFramework manual

Global Variables

The global variables are those variables whose scope is the main program, or main workflow.
They can be found in the main.xaml workflow file, by first clicking anywhere inside the main
state machine and then clicking the variables pane. Table 2 is a list of the project’s global

variables.

These are used to store information that will be available throughout the runtime of the process.
It is important to understand where each variable is written and where it is read.

The red cell background represents workflows in which the variable is written and the green cell
background workflows in which it is read.

Table 2 - Global variables table

Data type

Is written in workflows

Is read in workflows

Transactionltem Queueltem GetTransactionData.xaml Process.xaml
SetTransactionStatus.xaml
TransactionData GetTransactionData.xaml GetTransactionData.xaml
SystemError Exception Main.xaml Main.xlsx
SetTransactionStatus.xaml
BusinessRuleException | BusinessRuleException Main.xaml Main.xIsx

SetTransactionStatus.xaml

TransactionNumber Int32 SetTransactionStatus.xaml GetTransactionData.xaml
Config Dictionary(x:String, x:Object) | InitAllSettings.xaml InitAllApplications.xaml
GetTransactionData.xaml
Process.xaml
SetTransactionStatus.xaml
RetryNumber Int32 SetTransactionStatus.xaml SetTransactionStatus.xaml
TransactionlD string GetTransactionData.xaml SetTransactionStatus.xaml
TransactionField1 string GetTransactionData.xaml SetTransactionStatus.xaml
TransactionField2 string GetTransactionData.xaml SetTransactionStatus.xaml

UiPath_ REFramework manual

10

Init State
InitAllSettings.xaml workflow

This workflow outputs a settings Dictionary with key/value pairs to be used in the project.
Settings are read from local config file then fetched from Orchestrator assets. Assets will
overwrite the config file settings

Table 3 - InitAllSettings.xaml Arguments and values

dataType and Name Argument Type Values

String: in_ConfigFile Input "Data\Config.xIsx"
String[]: in_ConfigSheets Input {"Settings", "Constants"}
Dictionary(x:String, x:Object): out_Config Output Config

InitAllApplications.xaml workflow

Description: Open and initialize application as needed.
Pre Condition: N/A
Post Condition: Applications opened

Table 4 - InitAllApplications.xaml Arguments and values

dataType and Name Argument Type Values

String: in_Config Input Config

UiPath_ REFramework manual

Init Transitions

11

At the end of the Init State we should have read our configuration file into the dictionary Config,
a global variable, cleaned the working environment by calling the KillAllApplications.xaml
workflow only during startup, and initialised all the applications we will work with.

Table 5 - Init Transitions

Condition

Transition to
State

Description

SystemError

SystemError isNot Nothing

End Process

If we have an application exception
during the initialisation phase than
we lack vital information to begin the
process. That is why we end by
going to the End Process State

Success

SystemError is Nothing

Get Transaction Data

If during initialisation we have no
error than Get Transaction Data.

UiPath_ REFramework manual

12

Get Transaction Data State

GetTransactionData.xaml| workflow

Description: Get data from spreadsheets, databases, email, web API or UiPath server queues. If
no new data, set out_Transactionltem to Nothing.

For a linear process (not repetitive), set out_Transactionltem only for in_TransactionNumber 1 -
first and only transaction.

If the process is repeatable, set io_TransactionData once for in_TransactionNumber 1, then
assign a new out_Transactionltem by using the in_TransactionNumber to index
io_TransactionData. Be aware that, at the end of the io_TransactionData collection, it is your
responsibility to set out_Transactionltem to Nothing, thus ending the process.

Table 6 - GetTransactionData.xaml Arguments and Values

dataType and Name Argument Type Values

Int32: in_TransactionNumber Input TransactionNumber
Dictionary(x:String, x:Object): in_Config Input Config

Queueltem: out_Transactionltem Output Transactionltem
Datatable: io_TransactionData Input/Output TransactionData
String: out_TransactionID Output TransactionID
String: out_TransactionField1 Output TransactionField1
String: out_TransactionField2 Output TransactionField2

UiPath_ REFramework manual

13

Get Transaction Data Transitions

From the GetTransactionData state we have two possible outcomes. The first is that we have
obtained new transaction data in Transactionltem variable and so we move on to the Process
Transaction state. The other outcome is that either we have exhausted our data collection, and,
as a consequence of this, we have set the Transactionltem variable to Nothing or that we get an
Application Exception while processing GetTransactionData.xaml, in which case we cannot get
Data. This error causes us to go to the End Process State.

Table 7 - Get Transaction Data Transitions

Condition Transition to State Description

No Data Transactionltem is Nothing End Process If Transactionltem is Nothing
than we are at the end of our

data collection, go to End
Process.

New Transaction Transactionltem isNot Nothing Process Transaction If Transactionltem contains
data, process it.

UiPath_ REFramework manual

14

Process Transaction State

Process.xaml workflow

In this file all other process specific files will be invoked. If an application exception occurs, the
current transaction can be retried. If a BRE is thrown, the transaction will be skipped. Can be a
flowchart or sequence. If the process is simple, the developer should split the process into
subprocesses and call them, one at a time, in the Process.xaml workflow.

Table 8 - Process.xaml Arguments and values

dataType and Name Argument Type Values
Queueltem: in_Transactionltem Input Transactionltem
Dictionary(x:String, x:Object): in_Config Input Config

UiPath_ REFramework manual

15

SetTransactionStatus.xaml workflow

This workflow sets the TransactionStatus and Logs that status and details in extra Logging
Fields.

The flowchart branches out into the three possible Transaction Statuses: Success, Business
Exception and Application Exception.

Each branch analyzes the type of content of Transactionltem. If its not empty and is a
Queueltem, then it means we are using a Orchestrator queue, so we must call the “Set
Transaction Status” activity to inform Orchestrator about the outcome of our transaction. If
Transactionltem is not a Queueltem, we can skip passing it and the “Set Transaction Status”
activity will not be triggered.

After that we log the result of the transaction within custom log fields to make it easier to search
for within results.

This workflow is also where incrementing of the io_TransactionNumber variable takes place. If
we have an application exception and our MaxRetryNumber has not been reached, we
increment the io_RetryNumber variable and not the io_TransactionNumber variables. This is
done in the Robot Retry flowchart, which manages the retry mechanism of the framework and
which is part of the "Handle System Error" sequence.

Table 9 - SetTransactionStatus.xaml Arguments and values

dataType and Name Argument Type Values
Dictionary(x:String, x:Object): in_Config Input Config

Exception: in_SystemError Input SystemError
BusinessRuleException: in_BusinessRuleException Input BusinessRuleException
Queueltem: in_Transactionltem Input Transactionltem

Int32: io_RetryNumber Input/Output RetryNumber

Int32: io_TransactionNumber Input/Output TransactionNumber
String: in_TransactionField1 Input TransactionField1

UiPath_ REFramework manual

16

String: in_TransactionField2

Input

TransactionField2

String: in_TransactionlD

Input

TransactionFieldID

UiPath_ REFramework manual

17

TakeScreenshot.xaml workflow

Usage: Set in_Folder to the folder Name where you want to save the screenshot. Alternatively,
supply the full path including file name in io_FilePath. Description: This workflow captures a
screenshot and logs it's name and location. It then saves it. If io_FilePath is empty, it will try to
save the picture in in_Folder. It uses .png extension.

Table 10 - TakeScreenshot.xaml Arguments and Values

dataType and Name Argument Type Values

String: in_Folder Input in_Config("ExScreenshotsFolderPath").T
oString

String: io_FilePath InputOutput

CloseAllApplications.xaml workflow

Here all working applications will be soft closed.
Pre Condition: N/A
Post Condition: Applications closed

KillAlIProcesses.xaml workflow

Here all working processes will be killed
Pre Condition: N/A
Post Condition: N/A

UiPath_ REFramework manual

18

Process Transaction Transitions

The Process Transaction State is where the processing work for all transactions takes place.
After the Process.xaml file is executed, we look for an exception having been generated (either
Business Rule or Application). In case no exception was caught, it means we were successful.

The SetTransactionStatus.xaml workflow manages both the logging of the Process.xaml output,
as well as the management of the next transaction or the retrying of the current one. This
workflow is where TransactionNumber and RetryNumber are written, allowing for automatic retry
in case of an Application Exception.

Table 11 - Process Transaction Transitions

Condition Transition to State Description
Success BusinessRuleException is Nothing Get Transaction Data If we have a Business Rule Exception
AND SystemError is Nothing we log it and go to the next transaction.
Rule Exception | BusinessRuleException isNot Get Transaction Data If we have a business rule exception we
Nothing log it and move to the next transaction
by going to the Get Transaction Data
State.
Error SystemError isNot Nothing Init If we have an Application Exception we

close all programs, kill them if they fail to
close, take a screenshot at the moment
the exception happened, and go to Init,
where we will reinitialize our working
environment and begin anew from the
transaction that failed (retrying until we
have reached the maximum retry limit)

UiPath_ REFramework manual

End Process State

CloseAllApplications.xaml workflow

Here all working applications will be soft closed.
Pre Condition: N/A
Post Condition: Applications closed.

KillAlIProcesses.xaml workflow

Here all working processes will be killed.
Pre Condition: N/A
Post Condition: N/A

End Process Transitions

This is the final state, out of which there are no transitions.

UiPath_ REFramework manual

19

20

Additional Functions

Aside from the functions above, we included a useful workflow that will make credential
management easy to implement and secure.

GetAppCredentials.xaml workflow

Usage: Change in_Credential to a previously created Orchestrator asset or a Windows
credential and use outputs out_Username and out_Password.

Description: This workflow securely fetches or creates and uses a set of credentials defined at
it's input. It first tries to fetch them from Orchestrator. Failing that, it tries to fetch them from the
Windows credential manager. If they do not exist, it creates them and then outputs them.

Table 12 - GetAppCredentials.xaml Arguments and values

dataType and Name Argument Type Values

String: in_Credential Input "TestRobot-Credential"
String: out_Username Output

SecureString: out_Password Output

UiPath_ REFramework manual

21

Logging

Log messages are very important to any business process design as they offer a report of what
has happened.

As previously stated, log messages are composed of multiple log fields, each with
corresponding values. Logs are automatically generated by the robot when important events
happen, but also by the developer using a “Log Message” activity, and are pushed to the
Orchestrator server, which implements a component that will further push these logs to the
Elasticsearch database.

UiPath_ REFramework manual

22

Logged Messages

The following is a list of all the message logs within the framework, the places where the
corresponding “Log message” activity is called, the message and the level of the log (info, warn,
error, fatal).

Table 13 - Message logs

Message Workflow

Stop process requested Main.xaml Info

Config("LogMessage_GetTransactionDataError"). ToString+TransactionNumber.ToString+ | Main.xaml Fatal
". "+exception.Message+" at Source: "+exception.Source

"SetTransactionStatus.xaml failed: "+exception.Message+" at Source: "+exception.Source | Main.xaml Fatal
Config("LogMessage_GetTransactionData"). ToString+TransactionNumber.ToString Main.xaml Info
"Applications failed to close normally. "+exception.Message+" at Source: Main.xaml Warn

"+exception.Source

Process finished due to no more transaction data Main.xaml Info

"System error at initialization: " + SystemError.Message + " at Source: " + Main.xaml Fatal
SystemError.Source

"Loading asset " + row("Asset").ToString + " failed: " + exception.Message Framework\InitAllSett | Warn
ings.xaml

No assets defined for the process Framework\InitAllSett | Trace
ings.xaml

Opening applications... Framework\InitAllApp | Info
lications.xaml

in_Config("LogMessage_Success").ToString Framework\SetTrans | Info

actionStatus.xaml

in_Config("LogMessage BusinessRuleException").ToString + Framework\SetTrans | Error
in_BusinessRuleException.Message actionStatus.xaml

UiPath_ REFramework manual

23

in_Config("LogMessage_ApplicationException").ToString+" Max number of retries Framework\SetTrans | Error

reached. "+in_SystemError.Message+" at Source: "+in_SystemError.Source actionStatus.xaml

in_Config("LogMessage_ApplicationException"). ToString+" Retry: Framework\SetTrans | Warn

"+io_RetryNumber.ToString+". "+in_SystemError.Message+" at Source: actionStatus.xaml

"+in_SystemError.Source

in_Config("LogMessage_ApplicationException"). ToString+in_SystemError.Message+" at Framework\SetTrans | Error

Source: "+in_SystemError.Source actionStatus.xaml

"Take screenshot failed with error: "+exception.Message+" at Source: "+exception.Source | Framework\SetTrans | Warn
actionStatus.xaml

"CloseAllApplications failed. "+exception.Message+" at Source: "+exception.Source Framework\SetTrans | Warn
actionStatus.xaml

"KillAllProcesses failed. "+exception.Message+" at Source: "+exception.Source Framework\SetTrans | Warn
actionStatus.xaml

"Screenshot saved at: "+io_FilePath Framework\TakeScre | Info
enshot.xaml

Closing applications... Framework\CloseAll Info
Applications.xaml

Killing processes... Framework\KillAllPro | Info
cesses.xaml

You can see that many of the messages of the logs are made up of a concatenation (the + sign)
between strings stored in variables and static strings.

Let’s take one such example and break down its meaning. From there, every other log follows
the same logic. The message is the following:

in_Config("LogMessage ApplicationException”). ToString+" Retry: "+io_RetryNumber.ToString+".
"+in_SystemError.Message+" at Source: "+in_SystemError.Source

The first part of the message, in_Config("LogMessage_ApplicationException”). ToString, is read from
the Config dictionary, which enables easy modification if it is required. It is located in the
Constants sheet of the Config excel file, and it's content at the moment of writing this is “System
exception.”

Next we append the constant string “ Retry: “to which we append the value of the
io_RetryNumber, that is the retry we have reached.

Next we append the in_SystemError message and source, as they will shows where the
exception occurred and what it's message is.

As you can glean from the explanation of that single log message, it is composed of both static
and dynamic parts which are concatenated to form a whole.

UiPath_ REFramework manual

Custom Log Fields

24

Since Elasticsearch is a NO-SQL type database (not relational), we want to have the ability to
group logs based on certain criteria. Those criteria will be additional log fields that we have
added throughout the framework.

Most of these you need only know about and not modify, while some of them require the
developer to modify the values written in those fields. In the table below is a list of the log fields
added to the framework, their values, whether or not a developer implementing using the
framework needs to change these values and the location, in the program, where they are

added.

Field Name

Table 14 - Custom log fields

Values

Value

Change
required

Location field is added

logF_BusinessProcessName "Framework" Yes Main.xaml, Init State
logF_TransactionStatus “Success” No SetTransactionStatus.xaml, Success branch
“BusinessException” SetTransactionStatus.xaml, Business exception branch
“ApplicationException” SetTransactionStatus.xaml, Application exception branch
logF_TransactionNumber io_TransactionNumber | No SetTransactionStatus.xaml, Success branch
.ToString SetTransactionStatus.xaml, Business exception branch
SetTransactionStatus.xaml, Application exception branch
logF_TransactionlD in_TransactionID Yes SetTransactionStatus.xaml, Success branch
SetTransactionStatus.xaml, Business exception branch
SetTransactionStatus.xaml, Application exception branch
logF_TransactionField1 in_TransactionField1 Yes SetTransactionStatus.xaml, Success branch
SetTransactionStatus.xaml, Business exception branch
SetTransactionStatus.xaml, Application exception branch
logF_TransactionField2 in_TransactionField2 Yes SetTransactionStatus.xaml, Success branch

SetTransactionStatus.xaml, Business exception branch
SetTransactionStatus.xaml, Application exception branch

UiPath_ REFramework manual

25

Field Descriptions and explanations

1. logF_BusinessProcessName
This fields holds the name of the business process.
I's purpose is to group more than one business component into the same dashboard
visualisation within Elasticsearch. This is important when a business process and made up of
multiple business components, and so this field provides a way to group disjointed pieces of
data. As you can see from table 13, it's value needs to be changed. Let’s say you have a
business process made up of 3 business components. The business process is named “Invoice
Management”. What you need to do is open each framework built component and put “Invoice
Management” as the value of this field.

2. logF_TransactionStatus
Holding the status of the transaction, this log does not need to be changed. You will recall that
by passing the global variables named BusinessRuleException and SystemError, holding the
exception content, to SetTransactionStatus.xaml, we know exactly what the outcome of the
transaction was and we can populate this field.

3. logF_TransactionNumber
The value for this log field is the number of the transaction index, TransactionNumber. As such
and because this variable is managed by the system, you do not need to modify its value.

4. logF_TransactionlD
The value is that of the variable TransactionID, coming in from the global variables as an input
argument to the SetTransactionStatus.xaml workflow. This variable is written in the
GetTransactionData.xaml workflow. In other words, once we obtain our new Transaction Item,
we should choose an identifier for it. This should be unique, since we will use the value of this
field to display transaction outcomes for each different transaction.

5. logF_TransactionField1
The value is that of the variable TransactionField1, coming in from the global variables as an
input argument to the SetTransactionStatus.xaml workflow. This variable is written in the
GetTransactionData.xaml workflow. In other words, once we obtain our new Transaction Item,
we can add additional information regarding it. A single field, logF_TransactionID, might not be
enough.

6. logF_TransactionField2
The value is that of the variable TransactionField2, coming in from the global variables as an
input argument to the SetTransactionStatus.xaml workflow. This variable is written in the
GetTransactionData.xaml workflow. In other words, once we obtain our new Transaction Item,
we can add additional information regarding it because a single field, logF_TransactionID, might
not be enough.

UiPath_ REFramework manual

26

To wrap up this chapter, we remind you that you need not worry about the fields being logged,
with the exception of logF_BusinessProcessName field, where you assign the name of your
process, and the transaction specific fields (logF_TransactionlD, logF_TransactionField1,
logF_TransactionField2), where you should write identifying information about the transaction
that you will shortly be processing.

Needles to say, should you require more than three items of information about any particular
transactions to be logged, it is just a matter of creating the extra variables in the main program,
in GetTransactionData.xaml and in SetTransactionStatus.xaml workflows, and updating the
“Add Log Fields” and “Remove Log Fields” activities found within the SetTransactionStatus.xaml
with the names of the new fields and the values coming in through the variables you just
declared.

UiPath_ REFramework manual

27

Getting started, examples

Deploying the framework

To deploy the framework, follow the steps described below.

e Step 1: Copy its folder to your project location and rename it to represent your project
name.

e Step 2: Go into the project folder and, using any text application such as Notepad, open
the project.json file. Write the project name you defined in step 1 into the "id" field. Write
a project description into the "description" field. Save and close the file.

e Step 3: Open Main.xaml, navigate to the Init State, and change the value of the
logF_BusinessProcessName field from the default “Framework” to your business
process name.

Defining the scope of the process component and preparing the
framework

The first thing to do is to choose data types for the global variables Transactionltem and
TransactionData. Remember that Transactionltem stores the data required to complete a single
transaction. As such, TransactionData will have to be a collection, list, datatable e.t.c. containing
a “collection” of Transactionltems. The framework will then use TransactionNumber as the index
that will fetch a new Transactionltem from Transaction Data.

The next step is to check the workflows in which these variables are passed. We will need to
modify their data types both in the main.xaml workflow and in any other flow where it is passed
as an argument.

e Step 1: Change the data types of Transactionltem and TransactionData in the main
program.

e Step 2: Looking at Table 2 - Global variables table, we can see that both variables are
passed into GetTransactionData.xaml, Process.xaml and SetTransactionStatus.xaml

workflows.

e Step 3: Open GetTransactionData.xaml and Process.xaml and change the type of the
arguments to what we decided we need. Save and quit the workflows.

e Step 4: Using Table 1 - Component call tree structure, find where the
GetTransactionData.xaml and Process.xaml are called, in Main.xaml. Go to the point of

UiPath_ REFramework manual

28

calling and, for each workflow, click import arguments. The new argument types we have
saved in step 3 will show up. In the values section, pass the variables with the changed
type from main (Step 1).

Step 5: You do not need to make the argument change for the SetTransactionltem.xaml
workflow, but if you do not select a Queueltem data type for Transactionltem, delete it
from the values field and leave that field empty, or pass the null pointer, Nothing.

You should now have a framework that is setup according to your needs.

When developing, follow the following simple rules:

Always open your applications in InitAllApplications.xaml workflow.

Always close your applications in CloseAllApplications.xaml workflow.

Always Kill your applications in the KillAllApplications.xaml workflow.

TransactionNumber is the index that should be used to loop through TransactionData
and obtain our new Transactionltem. The looping happens between the Get Transaction
Data State and the Process State, and the system manages the incrementing of the
index. All the developer needs to do is use it to fetch a new Item.

The process ends when Transactionltem becomes Nothing, so it's the developer’s
responsability to assign the null pointer, Nothing, to the Transactionltem at the end of the
process.

UiPath_ REFramework manual

29

Usage example 1

Changes to GetTransactionData.xaml

In case your Transactionltem is contained in a bigger data structure, as is the case in Figure 1,
where TransactionData is a datatable (result of reading an excel file into memory) you will need
to read TransactionData once and then use TransactionNumber, which holds the index of the
current transaction, to fetch it's data.

In Figure 1, in the first transaction, we read the whole excel file and pass it to the global variable
TransactionData, which is a datatable. In this case, our Transactionltem will be a datarow, a
subset of our whole data.

1 GetTransactionData

web API or UiPath server queues

>

ﬂ If first Transaction, Read all the data

Condition

in_TransactionNumber = 1

Then Else

»

Read range

"Data\Input\Transactions Input.xlsx” Drop activity here
"Sheet1”
Figure 1 - read TransactionData once and output it to Global variables
We then need to use the index, TransactionNumber, to obtain our Transactionltem.
As a side note, we could have used a for each row activity to read the datarows of our datatable
one by one, but we need to use the TransactionNumber index to remember what transaction we
processed, and it is precisely this that gives us the ability to retry a transaction by simply not

incrementing the index..

So, in figure 2, we use an if to define our loop stop condition. Since TransactionNumber is
incremented by the framework we can compare it to the number of rows in the datatable. If it

UiPath_ REFramework manual

30

has become greater than the number of rows, we need to stop our loop. In Table 7 - Get
Transaction Data Transitions, we see that the transition we need to go through to end up in the
End Process State is “Transactionltem is Nothing”, and so, if we have run out of rows, we set
Transactionltem to Nothing.

If we have not, we set out_Transactionltem = io_TransactionData.Rows(in_TransactionNumber - 1).
We use TransactionNumber - 1 because it’s initial value is 1, and the index of the rows start at 0.

»

ﬂ. Mext Transaction, get Data

Condition
in_TransactionNumber <= io_TransactionData.Rows.Count

Then Else

A8 Assign a<6 Assign
out Transactionlter = io TransactionData out_Transactionlter = Nothing
Figure 2 - while we still have rows, read the current one based on

We can see that, as per Table 2 - Global variables table and Figure 3 - Argument list for
GetTransactionData.xaml, these variables are passed into the global scope.

Name Direction Argument type Default value
in_TransactionNumber In Int32

in_Config In Dictionary <String,Object>

out_Transactionltem Out DataRow

out_TransactionField1 Out String

out_TransactionField2 Out String

io_TransactionData In/Qut DataTable

out_Transaction|D Out String

Create Argument

Figure 3 - Argument list for GetTransactionData.xaml

UiPath_ REFramework manual

31

Next, we assign values to the Log Field variables that will carry these values to the
SetTransactionStatus.xaml file. Choose one or multiple fields from out_Transactionltem that
best represents identifying information for the transaction. For example:
out_TransactionlD=out_Transactionltem.ltem(“Identifier Column name”). ToString

@’E_. If a new ltem is fetched Grab it's significant data for logging

b4

Condition
out_Transactionltem isMNot Nothing

Then Else

r:1 Write Transaction info in Logging Fields &

a+8 Assign TransactionlD
out_TransactionlD = now.ToString
Drop activity here
a+8 Assign TransactionField

out_TransactionFiel = string.Empty

4*8 Assign TransactionField

out_TransactionFiel = string.Empty

Figure 4 - Transaction Log field value assignments in GetTransactionData.xaml

Changes to Process.xaml

Add the steps that take the data for a single Transaction, stored in the in_Transactionltem
variable, and use it to fulfil the process. As your applications are already open and your data is
available, you can begin work on the process.xaml file. In our case, in_Transactionltem is of
type datarow, so to get the value contained in “column named A”, we write
in_Transactionltem.ltem(“column named A”), or, if we know “column named A” is the fourth column
counting from one, in_Transactionltem.ltem(3).

Changes to InitAllApplications.xaml

Open all your applications, log them in and set up your environment. Modify the “Log message”
activity with information about what applications you are working with.

UiPath_ REFramework manual

32

Changes to CloseAllApplications.xaml

Log out, close all your applications. Modify the “Log message” activity with information about
what applications you are working with.

Changes to KillAllApplications.xaml

Kill all applications, in case one of them is not responding and cannot be closed when invoking
CloseAllApplications.xaml, they will be killed. Modify the “Log message” activity with information
about what applications you are working with.

Usage example 2

If this example the data we need for a Transaction is already obtained and is stored in an
Orchestrator Queue.

Changes to GetTransactionData.xaml

Since out data is stored in an Orchestrator server queue, our Transactionltem is of type
Queueltem. We simply use the Get Queue Item activity to obtain the next item. Since
Orchestrator server is the one serving items from the queue, one by one, we do not need to use
TransactionData to store the sum of all Transactions. And, as a consequence of that, we need
not worry about using TransactionNumber as an index for TransactionData. When the queue
will be empty, we will receive a null pointer, Nothing, from the Orchestrator server. This will in
turn cause the program to go to the End Process State.

Et] GetTransactionData

0
s]

&, Get Transaction ltem

Figure 5 - Get Queueltem activity to get the next Transactionltem

Next, we assign values to the Log Field variables that will carry these values to the
SetTransactionStatus.xaml file. Choose one or multiple fields from out_Transactionltem that
best represents identifying information for the transaction. For example:
out_TransactionID=out Transactionltem.ltem(“Identifier Column name”). ToString

UiPath_ REFramework manual

33

Changes to Process.xaml

Add the steps that take the data for a single Transaction, stored in the in_Transactionltem
variable, and use it to fulfil the process. As your applications are already open and your data is
available, you can begin work on the process.xaml file. In our case, in_Transactionltem is of
type Queueltem, so to get the value contained in field “field named A”, we write
in_Transactionltem.SpecificContent(“field named A”).

Changes to InitAllApplications.xaml

Open all your applications, log them in and set up your environment. Modify the “Log message”
activity with information about what applications you are working with.

Changes to CloseAllApplications.xaml

Log out, close all your applications. Modify the “Log message” activity with information about
what applications you are working with.

Changes to KillAllApplications.xaml

Kill all applications, in case one of them is not responding and cannot be closed when invoking
CloseAllApplications.xaml, they will be killed. Modify the “Log message” activity with information
about what applications you are working with.

UiPath_ REFramework manual

34

Glossary of terms (marked in italics)

Business process component: a subprocess representing a distinct part of a business process.

IT resource: A source of Information technology information. Can be a program of any nature or
a data file.

UiPath Orchestrator: A highly scalable server platform, enabling fast deployment, from one
robot to dozens, or even hundreds. You can audit and monitor their activities, schedule all types
of processes, and manage work queues. Create world-class reporting from Elasticsearch and
Kibana tools. Release management, collaboration tools, centralized logging and role-based
access are also supported.

ELK Stack: A platform of open source tools that enables the user to reliably and securely take
data from any source, in any format, and search, analyze, and visualize it in real time.

Transaction Data: A collection of data items of similar scope, or purpose, that completely
represents, from an informational point of view, a set of transactions.

Transaction Item: Data that completely represents, from an informational point of view, a single
transaction. Often this is the subset of data contained in the collection, Transaction Data.

Business Rule Exception or BRE: An exception manually triggered by the developer using the
“Throw” activity. The basic syntax of the activity’s input is: new
UiPath.Core.BusinessRuleException(‘this is my reason message”). The developer should throw
BREs when he needs particular information to be available in order to continue the process, but,
upon testing, discovers it is not available.

Application Exception: An exception that is triggered automatically by activities that fail, or
manually by the developer when a condition pertaining to the application environment is not as
was expected (for example, inputting data into a program we always expect success if we have
the data needed in a correct format, but upon submitting the data we receive an error. We can
capture the message and issue an application exception if retrying may solve the problem). The
basic syntax of the throw activity is new System.Exception(“this is my reason message”). There
are many types of exceptions.

Workflow: The basic building block of an UiPath application. You can represent data using a

sequence, a flowchart or a state machine. Can have arguments and be called from other
workflows.

UiPath_ REFramework manual

