

Best Practice Guide

Robotic Process Automation

Best Practice Guide 1

Revision History

Date Version Author Description

13th January 2017 0.1 A.C., T.H., A.S., M.B. Created document

19th January 2017 0.2 A.S. Added architecture &

release flow

30th January 2017 0.3 A.S. Changing doc structure

(PO & AL)

24th February 2017 0.4 A.S. Code reusability,

standards

25th January 2018 0.5 A.C. Added DSD

Best Practice Guide 2

Table of Contents

Revision History ... 1

1. Workflow Design ... 5

1.1. Layout Diagrams .. 5

1.2. Choices... 6

1.3. Data .. 9

1.4. Naming Conventions ...10

1.5. Comments and Annotations ..10

2. UI Automation ..11

2.1. Desktop Automation ...11

2.2. Image Automation ...13

2.3. UI Synchronization ...14

2.4. Background Automation ..15

3. Project Organization ...16

3.1. High-Level Frameworks ..16

3.2. Design principles ..19

3.3. Source Control ...21

3.4. Context Settings ..21

3.5. Credentials ..22

3.6. Error Handling ..22

Best Practice Guide 3

3.7. Keep it clean ...23

3.8. Code reusability ...24

3.9. How to check quality automation ...26

4. Automation Lifecycle ..27

4.1. Process understanding ...27

4.2. Documenting the process - SDD, PDI ...28

4.3. Development & Code Review ..29

4.4. Test ...29

4.5. Release ..30

4.6. Monitoring ..33

5. Orchestrator ...34

5.1. Multi-tenant – Experimental ..34

5.2. Robots..34

5.3. Environments ...34

5.4. Processes...35

5.5. Assigning Processes to Environments ...35

5.6. Jobs ..36

5.7. Schedules ..37

5.8. Queues ...37

5.9. Transactions ..38

5.10. Logs ..38

Best Practice Guide 4

This document outlines the standards and best practices to be considered by RPA developers

when building automation processes with UiPath.

Best Practice Guide 5

1. Workflow Design

UiPath offers three diagrams for integrating activities into a working structure when

developing a workflow file:

• Flowchart

• Sequence

• State Machine

Sequence

Sequences have a simple linear representation that flows from top to bottom and are best

suited for simple scenarios when activities follow each other. For example, they are useful in

UI automation, when navigation and typing happens one click/keystroke at a time. Because

sequences are easy to assemble and understand they are the preferred layout for most

workflows.

Flowchart

Flowcharts offer more flexibility for connecting activities and tend to lay out a workflow in a

plane two-dimensional manner. Because of its free form and visual appeal, flowcharts are

best suited for showcasing decision points within a process.

Arrows that can point anywhere closely resemble the unstructured GoTo programming

statement and therefore make large workflows prone to chaotic interweaving of activities.

State Machine

State Machine is a rather complex structure that can be seen as a flowchart with conditional

arrows, called transitions. It enables a more compact representation of logic and we found it

suitable for a standard high level process diagram of transactional business process template.

https://en.wikipedia.org/wiki/Goto
https://en.wikipedia.org/wiki/Goto

Best Practice Guide 6

Decisions need to be implemented in a workflow to enable the Robot to react differently in

various conditions in data processing and application interaction. Picking the most

appropriate representation of a condition and its subsequent branches has a big impact on

the visual structure and readability of a workflow.

If Activity

The IF activity splits a sequence vertically and is perfect for short balanced linear branches.

Challenges come when more conditions need to be chained in an IF… ELSE IF manner,

especially when branches exceed available screen size in either width or height. As a general

guideline, nested If statements are to be avoided to keep the workflow simple/linear.

Flow Decision

Flowchart layouts are good for showcasing important business logic and related conditions

like nested IFs or IF… ELSE IF constructs. There are situations where a Flowchart may look

good even inside a Sequence.

Best Practice Guide 7

If Operator

The VB If operator is very useful for minor local conditions or data computing, and it can

sometimes reduce a whole block to a single activity.

Switch Activity

Switch activity may be sometimes used in convergence with the If operator to streamline and

compact an IF… ELSE IF cascade with distinct conditions and activities per branch.

https://msdn.microsoft.com/en-us/library/bb513985.aspx
https://msdn.microsoft.com/en-us/library/bb513985.aspx

Best Practice Guide 8

Flow Switch

Flow Switch selects a next node depending on the value of an expression; FlowSwitch can be

seen as the equivalent of the procedural Switch activity in the Flowchart world. It can

matchmore than 12 cases by starting more connections from the same switch node.

Best Practice Guide 9

Data comes in two flavors when it comes to visibility and life cycle: arguments and variables.

While the purpose of arguments is to pass data from one workflow to another, variables are

bound to a container inside a single workflow file and can only be used locally.

Variable Scope

Unlike arguments, which are available everywhere in a workflow file, variables are only visible

inside the container where they are defined, called scope.

Variables should be kept in the innermost scope to reduce the clutter in the Variables panel

and to show only, in autocomplete, what is relevant at a particular point in the workflow. Also,

if two variables with the same name exist, the one defined in the most inner scope has

priority.

Arguments

Keep in mind that when invoking workflows with the Isolated option (which starts running

the workflow in a separate system process), only serializable types can be used as arguments

to pass data from a process to another. For example, SecureString, Browser and Terminal

Connection objects cannot safely cross the inter-process border.

Default Values

Variables and input arguments have the option to be initialized with some default static

values. This comes in very handy when testing workflows individually, without requiring real

input data from calling workflows or other external sources.

https://en.wikipedia.org/wiki/Process_(computing)

Best Practice Guide 10

Meaningful names should be assigned to workflow files, activities, arguments and variables in

order to accurately describe their usage throughout the project.

Firstly, projects should have meaningful descriptions, as they are also displayed in the

Orchestrator user interface and might help in multi-user environments.

Only argument names are case sensitive, but to improve readability, variables also should

align to a naming convention.

• Variables should be upper Camel Case, e.g. FirstName, LastName

• Arguments should be in upper Camel Case with a prefix stating the argument type, e.g.

in_DefaultTimeout, in_FileName, out_TextResult, io_RetryNumber

• Activity names should concisely reflect the action taken, e.g. Click ‘Save’ Button. Keep

the part of the title that describe the action (Click, Type Into, Element exists etc)

• Except for Main, all workflow names should contain the verb describing what the

workflow does, e.g. GetTransactionData, ProcessTransation, TakeScreenshot

The Comment activity and Annotations should be used to describe in more detail a technique

or particularities of a certain interaction or application behavior. Keep in mind that other

people may, at some point, come across a robotic project and try to ease their understanding

of the process.

Best Practice Guide 11

2. UI Automation

Sometimes the usual manual routine is not the optimal way for automation. Carefully explore

the application’s behavior and UiPath’s integration/features before committing to a certain

approach.

UI automation goes at its best when Robots and applications run on the same machine

because UiPath can integrate directly with the technology behind the application to identify

elements, trigger events and get data behind the scenes.

2.1.1. Input Methods

There are three methods UiPath uses for triggering a Click or a Type Into an application.

These are displayed as properties in all activities that deal with UI automation.

● If SimulateType or SimulateClick are

selected, Studio hooks into the application

and triggers the event handler of an

indicated UI element (button, edit box)

● If SendWindowMessages is selected, Studio

posts the event details to the application

message loop and the application’s window

procedure dispatches it to the target UI

element internally

● Studio signals system drivers with hardware events if none of the above option are

selected and lets the operating system dispatch the details towards the target

element

https://msdn.microsoft.com/en-us/library/windows/desktop/ff381405(v=vs.85).aspx

Best Practice Guide 12

These methods should be tried in the order presented, as Simulate and WindowMessages

are faster and also work in the background, but they depend mostly on the technology behind

the application.

Hardware events work 100% as Studio performs actions just like a human operator (e.g.

moving the mouse pointer and clicking at a particular location), but in this case, the

application being automated needs to be visible on the screen. This can be seen as a

drawback, since there is the risk that the user can interfere with the automation.

2.1.2. Selectors

Sometimes the automatically generated selectors propose volatile attribute values to identify

elements and manual intervention is required to calibrate the selectors. A reliable selector

should successfully identify the same element every time in all conditions, in dev, test and

production environments and no matter the usernames logged on to the applications.

Here are some tips of how to improve a selector in Selector Editor or UiExplorer:

• Replace attributes with volatile values with attributes that look steady and meaningful

• Replace variable parts of an attribute value with wildcards (*)

• If an attribute’s value is all wildcard (e.g. name=’*’) then attribute should be removed

• If editing attributes doesn’t help, try adding more intermediary containers

• Avoid using idx attribute unless it is a very small number like 1 or 2

In the selector above, we notice the page title has a reference to the time when selector was

recorded and also that some attributes have randomly looking IDs. Tweaking the attributes,

we can come up with a better selector than UiPath recorder proposed.

https://www.uipath.com/guides/about-selectors
https://www.uipath.com/guides/uipath-explorer

Best Practice Guide 13

2.1.3. Containers

Similar to file paths, selectors can be full or partial (relative). Full selectors start with a

window or html identifier and have all necessary information to find an element on the whole

desktop, while partial selectors work only inside an attach/container that specifies the top-

level window where elements belong:

• OpenBrowser

• OpenApplication

• AttachBrowser

• AttachWindow

There are several advantages to using containers with partial selectors instead of full

selectors:

• Visually groups activities that work on the same application

• Is slightly faster, not seeking for the top window every time

• Makes it easier to manage top level selectors in case manual updates are necessary

• Essential when working on two instances of the same application

Image recognition is the last approach to automating applications if nothing else works to

identify UI elements on the screen (like selectors or keyboard shortcuts). Because image

matching requires elements to be fully visible on the screen and that all visible details are the

same at runtime as during development, when resorting to image automation extra care

should be taken to ensure the reliability of the process. Selecting more/less of an image than

needed might lead to an image not found or a false positive match.

Resolution Considerations

Image matching is sensitive to environment variations like desktop theme or screen

resolution. When the application runs in Citrix, the resolution should be kept greater or equal

Best Practice Guide 14

than when recording the workflows. Otherwise, small image distortions can be compensated

by slightly lowering the captured image Accuracy factor.

Check how the application layout adjusts itself to different resolutions to ensure visual

elements proximity, especially in the case of coordinate based techniques like relative click

and relative scrape.

If the automation supports different resolutions, parallel recordings can be placed inside a

PickBranch activity and Robot will use either match.

OCR Engines

If OCR returns good results for the application, text automation is a good alternative to

minimize environment influence. Google Tesseract engine works better for smaller areas and

Microsoft MODI for larger ones.

Using the MODI engine in loop automations can sometimes create memory leaks. This is why

it is recommended that scraping done with MODI be invoked via a separate workflow, using

the Isolated property.

Unexpected behavior is likely to occur when the application is not in the state the workflow

assumes it to be. The first thing to watch for is the time the application takes to respond to

Robot interactions.

The DelayMS property of input enables you to wait a while for the application to respond.

However, there are situations when an application’s state must be validated before

proceeding with certain steps in a process. Measures may include using extra activities that

wait for the desired application state before other interactions. Activities that might help

include:

• ElementExists, ImageExists, Text Exists, OCR Text Exists

• FindElement, Find Image, Find Text

• WaitElementVanish, WaitImageVanish

• WaitScreenText(in terminals)

Best Practice Guide 15

If an automation is intended to share the desktop with a human user, all UI interaction must

be implemented in the background. This means that the automation has to work with UI

element objects directly, thus allowing the application window to be hidden or minimized

during the process.

● Use the SimulateType, SimulateClickand SendWindowMessagesoptions for

navigation and data entry via the Click and TypeInto activities

● Use the SetText, Check and SelectItem activities for background data entry

● GetText, GetFullText and WebScraping are the output activities that run in the

background

● Use ElementExists to verify application state

Best Practice Guide 16

3. Project Organization

Starting from a generic (and process agnostic) framework will ensure you deal in a consistent

and structured way with any process. A framework will help you start with the high-level view,

then you go deeper into the specific details of each process.

Robotic Enterprise FrameworkTemplate proposes a flexible high level overview of a

repetitive process and includes a good set of practices described in this guide and can easily

be used as a solid starting point for RPA development with UiPath. The template is built on a

State Machine structure.

https://www.uipath.com/guides/state-machines

Best Practice Guide 17

How it works:

• The Robot loads settings from the config file and Orchestrator assets, keeping them in

a dictionary to be shared across workflows

• The Robot logs in to all applications, before each login fetching the credentials

• It retries a few times if any errors are encountered, then succeeds or aborts

• The Robot checks the input queue or other input sources to start a new transaction

• If no (more) input data is available, configure the workflow to either wait and retry or

end the process

Best Practice Guide 18

• the UI interactions to process the transaction data are executed

• If the transactions are processed successfully, the transaction status is updated and

the Robot continues with the next transaction

• If any validation errors are encountered, the transaction status is updated and the

Robot moves to the next transaction

• If any exceptions are encountered, the Robot either retries to process the transaction

a few times (if configured), or it marks the item as a failure and restarts

• At the end, an email is sent with the status of the process, if configured

For transaction-based processes (e.g. processing all the invoices from an Excel file) which are

not executed through Orchestrator, local queues can be built (using .NET enqueue/ dequeue

methods).

Then the flow of the high-level process (exception handling, retrial, recovery) could be easily

replicated - easier than by having the entire process grouped under a For Each Row loop.

All the REFrameWork files, together with the documentation are found here:

https://github.com/UiPath/ReFrameWork

https://msdn.microsoft.com/en-us/library/t249c2y7(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/t249c2y7(v=vs.110).aspx
https://github.com/UiPath/ReFrameWork

Best Practice Guide 19

Breaking the process in smaller workflows is paramount to good project design. Dedicated

workflows allow independent testing of components while encouraging team collaboration

by developing working on separate files.

Best Practice Guide 20

Choose wisely the layout type - flowcharts and sequences. Normally the logic of the process

stays in flowcharts while the navigation and data processing is in sequences.

By developing complex logic within a sequence, you will end up with a labyrinth of containers

and decisional blocks, very difficult to follow and update.

On the contrary, UI interactions in a flowchart will make it more difficult to build and

maintain.

Project related files (e.g. email templates) could be organized in local foldersor shared

drives.

Linear UI interaction, should be

built within a sequence

Best Practice Guide 21

Note: If placed inside the project folder, they will be replicatedduring the deployment

process(together with the projects workflows) on all the Robot machines under lib/net45

folder

These folders could be also stored on a shared drive - so all the Robots will connect to the

same unique source. This way, the process related files could be checked and maintained by

the business users entirely, without support from the RPA team. However, the decision

(shared or local folders) is complex and should take into consideration various aspects related

to the process and environment: size of the files, frequency of changes, concurrency for

editing the same file, security policies etc.

In order to easily manage project versioning and sharing the work on more developers, we

recommend using a Version Control System.UiPath Studio is directly integratedwith TFS &

SVN - a tutorial explaining the connection steps and functionalities can be accessed here.

To avoid hard coding external settings (like file paths, URLs) in the workflows, we recommend

keeping them in a config file (.xlsx or .xml or .json) or in Orchestrator assets if they change

often.

Generally speaking, the final solution should be extensible - allow variation and changes in

input data without developer intervention. For example - lists with customers that are

allowed for a certain type of transaction, emails of people to receive notifications etc. - should

be stored in external files (like Excel) where business people or other departments can alter

directly (add/remove/update).

For any repetitive process, all workflow invocations from the main loop should be marked

with the Isolated option to defend against potential Robot crashes (e.g. Out of memory).

https://www.uipath.com/guides/connecting-your-project-to-a-source-control

Best Practice Guide 22

No credentials should be stored in the workflow directly, but rather they should be loaded

from safer places like local Windows Credential Store or Orchestrator assets. You can use

them in workflows via the GetCredential activities.

Integration with some 3rd party password management solutions (e.gCyberArk) will be made

possible in the next release of UiPath (2017.1)

Two types of exceptions may happen when running an automated process: somewhat

predictable or totally unexpected. Based on this distinction there are two ways of addressing

exceptions, either by explicit actions executed automatically within the workflow, or by

escalating the issue to human operators.

Exception propagation can be controlled by placing susceptible code inside Try/Catch blocks

where situations can be appropriately handled. At the highest level, the main process diagram

must define broad corrective measures to address all generic exceptions and to ensure

system integrity.

Contextual handlers offer more flexibility for Robots to adapt to various situations and they

should be used for implementing alternative techniques, cleanup or customization of user/log

messages. Take advantage of the vertical propagation mechanism of exceptions to avoid

duplicate handlers in catch sections by moving the handler up some levels where it may

cover all exceptions in a single place.

Enough details should be provided in the exception message for a human to understand it

and take the necessary actions. Exception messages and sources are essential. The source

property of the exception object will indicate the name of the activity that failed (within an

invoked workflow). Again, naming is vital - a poor naming will give no clear indication about

the component that crashed.

Best Practice Guide 23

In the process flow, make sure you close the target applications (browsers, apps) after the

Robots interact with them. If left open, they will use the machine resources and may interfere

with the other steps of automation.

Before publishing the project, take a final look through the workflows and do some clean-

up:remove unreferenced variables, delete temporary Write Line outputs, delete disabled

code, make sure the naming is meaningful and unique, remove unnecessary containers (Right-

click >Remove sequence).

Invoke activities not renamed, in case of a crash the exception

source will be meaningless (like Invoke workflow file: Invoke

workflow file: Invoke workflow file: Type Into)

Best Practice Guide 24

The project name is also important – this is how the process will be seen on Orchestrator, so it

should be in line with your internal naming rules. By default, the project ID is the initial project

name, but you can modify it from the project.json file.

The description of the project is also important (it is visible in Orchestrator) - it might help you

differentiate easier between processes – so choose a meaningful description as well.

When developing, we often need to automate the same steps in more than one workflow/

project, so it should be common practice to create workflows that contain small pieces of

occurring automation and add them to the Library.

There is no universal recipe that tells you how to split any given process.

However, separation of business logic from the automation components is good principle

that will help with building a code that can be reused effectively.

Example

Let’s assume that a part of your process requires reading the customer info, then – based on

that info and internal business rules - update the customer details.

"Get Customer Info" and "Change Customer Info" should be two distinct automation

components, completely agnostic of any process. The logic (eg. update the customer type

only when total amount is > 100k in the last 12 months) should be kept separated from

automation. Both components could be used later, separately, in the same project or in a

different one, with a different logic. If needed, specific data could be sent to these

components through arguments.

"Change Customer Info" should not be invoked from within "Get Customer Info" - as this will

make it more difficult to test, handle exceptions and reuse.

Best Practice Guide 25

Separate components for Get Info and Change Info - OK

When separation between actions is not that obvious, copy - pasting existing code from one

workflow to another (or from one project to another) – is also a good indication that you

should build a separate component (workflow) for the code and invoke it when needed.

Where to store reusable components

Dragging and dropping existing code from the Library to a workflow is easier than recreating

the code from scratch, again and again. Dealing with data (Sorting, Filtering) or with text

(Splitting, Regex patterns) are examples of what could be added to the sample library. But

make no confusion – once the code is added to the workflow, this will be static - if you update

the workflow in the Library, it won’t be reflected in the existing live processes.

Common (reusable) components (e.g. App Navigation, Log In, Initialization) are better stored

and maintained separately, on network shared drives. From that drive, they can be invoked

by different Robots, from different processes. The biggest advantage of this approach –

improved maintainability – is that any change made in the master component will be reflected

instantly in all the processes that use it.

An example of reusable content implementation - on release chapter

Change Info inside Get Info – Not OK

Best Practice Guide 26

Modularity

• Separation of concerns with dedicated workflows allows fine granular development

and testing

• Extract and share reusable components/workflows between projects

Maintainability

• Good structure and development standards

Readability

• Standardized process structure encouraging clear development practices

• Meaningful names for workflow files, activities, arguments and variables

Flexibility

• Keep environment settings in external configuration files/Orchestrator making it easy

to run automation in both testing and production environments

Reliability

• Exception handling and error reporting

• Real-time execution progress update

Extensible

• Ready for new use cases to be incorporated

Best Practice Guide 27

4. Automation Lifecycle

Deciding between an automation for attended robots or back office unattended robots is the

first important decision that impacts how developers will build the code. The general running

framework (robot triggering, interaction, exception handling) will differ. Switching to the

other type of robots later may be cumbersome.

For time critical, live, humanly triggered processes (e.g. in a call center) a Robot working side

by side with a human (so Attended) might be the only possible answer.

But not all processes that need human input are supposed to run with Attended robots. Even

if a purely judgmental decision (not rule-based) during the process could not be avoided,

evaluate if a change of flow is possible - like splitting the bigger process in two smaller sub-

processes, when the output of the first sub-process becomes the input for the second one.

Human intervention (validation/modifying the output of the first sub-process) takes places in

between, yet both sub-processes could be triggered automatically and run unattended.

A typical case would be a process that requires a manual step somewhere during the process

(e.g. checking the unstructured comments section of a ticket and - based on that - assign the

ticket to certain categories).

Generally speaking, going with an Unattended robot will ensure a more efficient usage of the

Robot load and a higher ROI, a better management and tracking of robotic capacities.

But these calculations should take into consideration various aspects (an Attended robot

could run usually only in the normal working hours, it may keep the machine and user busy

until the execution is finished etc.). Input types, transaction volumes, time restrictions, the

number of Robots available etc. will play a role in this decision.

Best Practice Guide 28

The process documentation guides the developer's work and provides help in tracking the

requests and the application maintenance. Of course, there might be lots of other technical

documents, but one is critical for a smooth implementation - DSD (Development Specification

Document).

The Development Specification Document (DSD) should contain the automated process

details and focus on two main categories: Runtime Guide and Development Details.

The Runtime Guide should contain a high-level runtime diagram, as well as details about the

functionality of the robot, such as sub-processes, schedules, configuration settings, input

files, output files, temporary files, and performed actions. Additional details about the master

process should be specified - prerequisites, automatic and manual error handling, process

resuming in case of failure, Orchestrator usage, logging and reporting, credential

management, and any other relevant information related to security or function.

The Development Details should contain information about the packages in use, the

development environment, the logging level, the source code repository and versioning, a list

of workflow components with their description and argument list, a list of reusable

components, the workflow invoke tree, defined custom logs and log fields, relevant

snapshots of the process flowchart, the level of background vs foreground automation, and

any other relevant or outstanding development items.

Best Practice Guide 29

The RPA Solution Architect is responsible for continuously coaching developers on the best

practices. Hence, frequent and thorough code reviews are a must, to enforce a very high

quality of the developed workflows. This way, the developers are motivated to build robust

workflows and to follow the best practices guide.

After each component is built, unit testing should be conducted. If every component is

thoroughly tested, the integration runs more smoothly, and debugging lasts for a shorter

period of time. The REFrameWork contains a Test_Framework folder where all the test files

should be placed. Using the RunAllTests.xaml, a developer can test a sequence containing a

lot of xaml files automatically, thus being able to try out small integrations between

components and to run stress tests. A report is generated at the end of each test. Typically,

these kinds of tests should be run outside office hours, in testing environments, to optimize

the developer’s time.

The recommended UiPath architecture includes Dev and Test environments that will allow

the processes to be tested outside the live production systems.

Sometimes applications look or behave differently between the dev/test and production

environments and extra measures must be taken, sanitizing selectors or even conditional

execution of some activities.

Use config file or Orchestrator assets to switch flags or settings for the current environment.

A test mode parameter (Boolean) could be checked before interacting with live applications.

This could be received as an asset (or argument) input. When it is set to True - during debug

and integration testing, it will follow the test route – not execute the case fully i.e. it will not

send notifications, will skip the OK/Save button or press the Cancel/Close button instead, etc.

When set to False, the normal Production mode route will be followed.

This will allow you to make modifications and test them in processes that work directly in live

systems.

Best Practice Guide 30

There are various ways of designing the architecture and release flow –considering the

infrastructure setup, concerns about the segregation of roles etc.

In this proposed model UiPath developers can build their projects and test them on

Development Orchestrator. They will be allowed to check in the project to a drive managed

by a VCS - version control system (GIT, SVN, TFS etc).

Publishing the package and making it available for QA and Prod environments will be the

work of a different team (eg IT).

The deployment paths on Orchestrator have been changed from default to folders managed

by the VCS (by changing packagesPath value in web.config file under

UiPath.Server.Deployment)

The model also contains a repository of reusable components.

Best Practice Guide 31

Here is the project publishing flow, step by step:

• Developers build the process in UiPath Studio and test it with the Development

Orchestrator; Once done, they check in the workflows (not packaged) to a Master

UiProcess Library folder (on VCS);

• The IT team will create the package for QA. This will be stored on a QA Packagefolder

on VCS QA run the process on dedicated machines

• If any issue revealed during the tests, steps above are repeated.

• Once all QA tests are passed, the package is copied to a the production environment

(P Package)

• Process is going live, run by the production robots.

Reusable content is created and deployed separately – as UiPath code (Reusable Code

Library) and Invokes (Invokes Repository).

So we distinguish here between the actual workflows with source code (.xaml files

containing UiPath activities for automating a common process – eg Log in SAP)

Ex: LogIn–SAP – code.xaml

Best Practice Guide 32

andinvokes (workflows composed of only one UiPath invoke activity of the code workflows

mentioned above).

The Library of developer Studio should point to this Invoke repository in order to provide easy

access (drag & drop) to reusable content.

The local design authority in charge with maintaining the reusable content will update (due to

a change in process, for instance) the workflows with code. The invokes will remain

unchanged.

The advantage of this approach (as opposed to work directly with the library of source code):

when a change is done to a reusable component, all the running projects will reflect this

change as well – as they only contain an invoke of the changed workflow.

Ex: LogIn–SAP – inv.xaml

Best Practice Guide 33

Using Log Message activities to trace the evolution of a running process is essential for

supervising, diagnose and debugging a process. Messages should provide all relevant

information to accurately identify a situation, including transaction ID and state.

Logging should be used:

• at the beginning and the end of every workflow

• when data is coming in from external sources

• each time an exception is caught at the highest level

Messages are sent with the specified priority (e.g. Info, Trace, Warning) to the Orchestrator

and also saved in the local NLog file.

Custom Log Fields

To make data easily available in Kibana

for reporting purposes, the Robot may

tag log messages with extra values using

the Add Log Fields activity. By default,

any UiPath log output has several fields

already, including message, timestamp,

level, processName, fileName and the

Robot’s windowsIdentity. Log Fields are

persistent so if we need not mark all

messages with a tag, fields should be

removed immediately after logging

(Remove Log Fields). Do not to use a

field name that already exists. It’s

important to specify the proper type of argument the first time when you add the field. This is

how ElasticSearch will index it.

Best Practice Guide 34

5. Orchestrator

UiPath Orchestrator offers a multi-tenant option. Using more than one tenant, users can split

a single instance of Orchestrator to multiple environments, each one having their robots,

processes, logs and so on.

This can be very useful when separated artifacts for different departments or different

instances for clients are needed.

Use meaningful names and descriptions for each Robot provisioned.

For Back Office Robots, the Windows credentials are needed in order to run unattended jobs

on these types of Robots. For Front Office Robots, credentials are not needed because the

job will be triggered manually by a human agent, directly on the machine where the Robot is

installed.

Every time a new Robot is provisioned, the type of the Robot should be chosen accordingly.

The next step after registering the Robot to Orchestrator is done is to check if its status is

Available, in the Robots page.

Use meaningful names and descriptions for each environment created.

Orchestrator Environments should map the groups of process execution. Each environment

should have a specific role in the company business logic.

If a Robot is going to execute two different roles, it can be assigned to multiple

environments.

Best Practice Guide 35

The access management of the Robots to the processes is done by using the Environments

properly.

Once in a while, old versions of processes that are not used anymore should be deleted.

Versions can be deleted one-by-one, by selecting them manually and clicking the Delete

button or the Delete Inactivebutton, that deletes all the process versions that are not used

by any Release.

Note: It’s recommended to keep at least one old version to be able to rollback if something is

wrong with the latest process version.

It is good practice to assign each process published to Orchestrator to an environment. In the

Processes page, the deployment decision is taken. All the Robots from the environment will

get access to the process version set for this Release.

When a new version of a process is available, an icon will inform the user.

Rolling back to the previous version is always an option if something goes wrong after

updating. This can be done by pressing the Rollback button.

Best Practice Guide 36

If the robot should run multiple processes with no interruption, all the jobs should be

triggered one after another even if the robot is busy. These jobs will go in a queue, with the

Pending status, and when the Robot is available again, Orchestrator triggers the next job.

It’s better to cancel a job than to terminate it.

To be able to Cancel a job, the Should Stop activity is needed in the process workflow. This

activity returns a boolean result that indicates if the Cancel button was clicked.

The Terminate button sends a Kill command to the Robot. This should be used only when

needed, because the Robot might be right in the middle of an action.

Best Practice Guide 37

Besides the obvious functionality, schedules can be used to make a robot run 24/7. Jobs can

be scheduled one after another (at least one minute distance) and if the Robot is not available

when the process should start, it’s going to be added to the jobs queue.

Use meaningful name and description for each queue created.

At the end of each transaction, setting the result of the item processing is mandatory.

Otherwise, the transaction status will be set by default to Abandoned after 24 hours.

Using the Set Transaction Status activity, a queue item status can be set to Successful or

Failed. Keep in mind that only the Failed items with Application ErrorType are going to be

retried.

If there are two or more types of items that should be processed by the same Robots, there

are at least two option of how these can be managed by the Queues.

1. Create multiple queues, one for each type and create a process that checks all the

queues in a sequence and the one with new items should trigger the specific process.

2. Create a single queue for all the items and for each item, create an argument “Type” or

“Process”. By knowing this parameter, the robot should decide what process should be

invoked.

Best Practice Guide 38

The Add Transaction Item activity brings the option of getting all the Transactions

functionalities without using a queue properly (a queue should still be created before). This

activity adds an item to the queue and sets its status to InProgress. Start using the item right

away and don’t forget to use the Set Transaction Status activity at the end of your process.

The Add Log Fields activity adds more arguments to Robot logs for a better management.

After using it in the workflow, the Log Message activity will also log the previously added

fields.

