Submission type
Coded Agent with UiPath SDK
Name
Satish Prasad
Industry category in which use case would best fit in (Select up to 2 industries)
Logistic
Complexity level
Advanced
Summary (abstract)
LTL Claim Processing Coded Agent with UiPath SDK is an intelligent automation system designed to revolutionize Less-Than-Truckload (LTL) freight claim management. Traditional claims processing is slow, error-prone, and highly manual, leading to operational inefficiencies, customer dissatisfaction, and financial loss. This project addresses these challenges by integrating AI-driven reasoning agents, UiPath automation services, and a modern web portal into a unified, end-to-end claims platform.
The solution combines three major components:
ReAct Claims Agent (Python + LangGraph) — an autonomous AI agent that leverages reasoning-acting loops to analyze documents, validate claim data, detect anomalies, and make data-driven claim decisions.
LTL Claims Portal (React + TypeScript) — a user-friendly web interface enabling customers to submit, track, and interact with claims in real time.
Backend API (Node.js + UiPath SDK) — a middleware service that bridges the web portal, UiPath Orchestrator, and Data Services, ensuring secure and scalable workflow execution.
By integrating UiPath Document Understanding, Data Services, and Orchestrator, the system automates claim extraction, validation, and decision-making with minimal human intervention. It achieves up to 85% faster processing, 95% accuracy, and 60% cost reduction, while providing full transparency and auditability.
Detailed problem statement
The $90B+ U.S. Less-Than-Truckload (LTL) freight market faces growing pressure from tighter margins, increasing claim volumes, and fragmented manual workflows. Despite advances in logistics technology, over 80% of 3PLs still process claims manually — relying on spreadsheets, emails, and paper documentation (DAT Freight Focus 2023)
.
Every year, 5–10% of all LTL shipments encounter OSD issues (overages, shortages, damages), resulting in hundreds of millions of dollars in unresolved claims and delayed reimbursements. Filing a single claim can take 20–40 minutes, while managing hundreds consumes entire back-office teams, creating operational bottlenecks and inconsistent outcomes.
Additionally, freight theft and liability risks — exceeding £1 billion annually in the UK (RHA Insurance Services)
— amplify the need for robust, auditable, and automated claim management.
In summary, the LTL industry struggles with:
Manual, time-consuming processes that reduce productivity
High error and dispute rates due to human data handling
Limited visibility and inconsistent decision-making across carriers
Rising financial losses from unresolved, delayed, or fraudulent claims
There is a clear need for an intelligent, end-to-end automated claims platform that leverages AI and UiPath automation to accelerate processing, ensure accuracy, and deliver real-time visibility for all stakeholders.
Detailed solution
%% LTL Claims Processing Agent - Architecture Diagram
%% Shows the multi-agent system with specialized sub-agents
graph TB
subgraph "Main Graph (LangGraph)"
MAIN[Main Orchestration Flow<br/>11 Nodes + Conditional Routing]
end
subgraph "Specialized Sub-Agents"
ORCH[Orchestrator Agent<br/>Model: GPT-4o<br/>Purpose: Planning & Coordination]
DOC[Document Processor Agent<br/>Model: GPT-4o-mini<br/>Purpose: Document Download & Extraction]
RISK[Risk Assessor Agent<br/>Model: GPT-4o-mini<br/>Purpose: Risk Analysis & Scoring]
COMP[Compliance Validator Agent<br/>Model: GPT-4o-mini<br/>Purpose: Policy Validation]
end
subgraph "Decision Strategy"
DEC[Hybrid Decision Strategy<br/>Model: GPT-4o<br/>LLM + Rule-Based Fallback]
end
subgraph "UiPath Services"
DF[Data Fabric<br/>Entities API]
IXP[Document Understanding<br/>IXP/DU API]
CG[Context Grounding<br/>Knowledge Base]
AC[Action Center<br/>Human-in-the-Loop]
QUEUE[Queue Management<br/>Orchestrator Queues]
BUCKET[Storage Buckets<br/>Document Storage]
end
subgraph "Memory System"
MEM[Long-Term Memory<br/>SQLite/PostgreSQL<br/>Historical Context & Patterns]
end
%% Main Flow Connections
MAIN -->|Create Plan| ORCH
MAIN -->|Process Documents| DOC
MAIN -->|Assess Risk| RISK
MAIN -->|Validate Policy| COMP
MAIN -->|Make Decision| DEC
%% Sub-Agent to Service Connections
ORCH -.->|Query Tools| CG
DOC -->|Download| BUCKET
DOC -->|Extract| IXP
RISK -.->|Search Similar Claims| MEM
COMP -->|Search Policies| CG
COMP -->|Search Carriers| CG
DEC -.->|Historical Context| MEM
%% Main to Service Connections
MAIN -->|Validate| DF
MAIN -->|Escalate| AC
MAIN -->|Update Status| QUEUE
MAIN -->|Store Results| DF
MAIN -->|Store Outcome| MEM
%% Styling
classDef agentClass fill:#e1f5ff,stroke:#0288d1,stroke-width:2px
classDef serviceClass fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px
classDef mainClass fill:#fff9c4,stroke:#f57f17,stroke-width:3px
classDef memoryClass fill:#e8f5e9,stroke:#2e7d32,stroke-width:2px
class ORCH,DOC,RISK,COMP,DEC agentClass
class DF,IXP,CG,AC,QUEUE,BUCKET serviceClass
class MAIN mainClass
class MEM memoryClass
LTL Claims Processing Agent
Production-grade multi-agent system using LangGraph orchestration for intelligent claims processing
Technology Stack
- Core Framework: Python 3.10+, LangGraph, LangChain
- AI Models: GPT-4o (orchestration & decisions), GPT-4o-mini (specialized tasks)
- Integration: UiPath Python SDK v0.0.106+
- Memory: SQLite/PostgreSQL for long-term pattern learning
- State Management: Pydantic models with comprehensive validation
Architecture Highlights
- Multi-Agent System: 4 specialized sub-agents coordinated by LangGraph
- Orchestrator Agent (GPT-4o): Creates execution plans and coordinates workflow
- Document Processor Agent (GPT-4o-mini): Downloads and extracts document data
- Risk Assessor Agent (GPT-4o-mini): Calculates risk scores and identifies factors
- Compliance Validator Agent (GPT-4o-mini): Validates policy compliance
- Decision Strategy: Hybrid LLM + rule-based approach with fallback logic
State Graph: 11 nodes with conditional routing for complex workflows
Memory System: Long-term memory stores historical patterns for improved decisions
Key Capabilities
Document Understanding: Extracts data from BOLs, invoices, damage reports using UiPath IXP
Knowledge Search: Queries Context Grounding for policies, procedures, and precedents
Multi-Layer Validation: Data Fabric validation, document confidence checks, policy compliance
Risk Assessment: Weighted scoring algorithm with historical pattern analysis
� Human-ini-the-Loop: Action Center integration for low-confidence or high-risk claims
� * Intelligent Decisions*: Hybrid strategy combining LLM reasoning with rule-based fallbacks
� Auvdit Trail: Complete processing history with reasoning steps and tool usage
Learning System: Stores outcomes in memory for continuous improvement
Processing Workflow (11 Nodes)
Initialize Input - Load historical context from memory
Create Plan - Orchestrator generates execution plan
Validate Data - Query Data Fabric for claim/shipment validation
Download Documents - Process and extract document data
Assess Risk - Calculate risk score with weighted factors
Validate Policy - Check compliance against knowledge base
Evaluate Progress - Determine if human review needed
Escalate to Human - Create Action Center task (conditional)
Make Decision - Hybrid LLM + rule-based decision
Update Systems - Update queue transaction and Data Fabric
Finalize Output - Store in memory and build response
LTL Claims Web Portal
Modern, responsive React application for seamless claim submission and tracking
Technology Stack
Frontend Framework: React 18 with TypeScript
UI Library: Material-UI (MUI) v5 with custom theme
Styling: Tailwind CSS + MUI components
Build Tool: Vite for fast development and optimized builds
Narrated video link (sample: https://bit.ly/4pvuNEL)
Expected impact of this automation
Key Benefits
85% Faster Processing: Claims resolved in hours, not days
95% Accuracy: AI validation minimizes errors
60% Cost Reduction: Automation reduces manual workload
Full Auditability: Every decision is logged and traceable
Seamless Integration: Built on UiPath’s cloud ecosystem with scalable architecture
This solution transforms traditional, manual claim workflows into a smart, autonomous, and auditable system, empowering 3PLs and carriers to process claims faster, cut costs, and improve customer trust.
%% LTL Claims Processing Agent - Complete Workflow Diagram
%% This diagram reflects the actual implementation in main.py
graph TB
START([Start: Claim Input]) --> INIT[Initialize Input Node]
%% Initialize Input Node
INIT --> INIT_VALIDATE{Validate Input<br/>Fields}
INIT_VALIDATE -->|Valid| INIT_MEMORY{Long-term<br/>Memory Enabled?}
INIT_VALIDATE -->|Invalid| ERROR_INIT[Log Validation Errors]
ERROR_INIT --> END_ERROR([End: Validation Failed])
%% Memory Loading
INIT_MEMORY -->|Yes| LOAD_MEMORY[Load Historical Context<br/>- Similar Claims<br/>- Decision Patterns]
INIT_MEMORY -->|No| CREATE_PLAN
LOAD_MEMORY --> CREATE_PLAN[Create Plan Node]
%% Plan Creation
CREATE_PLAN --> PLAN_AGENT[Orchestrator Agent<br/>GPT-4o]
PLAN_AGENT --> PLAN_TOOLS{Use Tools?}
PLAN_TOOLS -->|Yes| PLAN_TOOLS_EXEC[Execute Planning Tools]
PLAN_TOOLS_EXEC --> PLAN_RESULT
PLAN_TOOLS -->|No| PLAN_RESULT[Generate Execution Plan]
PLAN_RESULT --> VALIDATE_DATA
%% Data Validation
VALIDATE_DATA[Validate Data Node] --> DF_QUERY[Query Data Fabric<br/>- Validate Claim ID<br/>- Validate Shipment ID]
DF_QUERY --> DF_RESULT{Data Found?}
DF_RESULT -->|Yes| DF_ENRICH[Enrich State with<br/>Data Fabric Info]
DF_RESULT -->|No| DF_ERROR[Add Validation Error]
DF_ENRICH --> DOWNLOAD_DOCS
DF_ERROR --> DOWNLOAD_DOCS
%% Document Processing
DOWNLOAD_DOCS[Download Documents Node] --> DOCS_CHECK{Documents<br/>Available?}
DOCS_CHECK -->|No| ASSESS_RISK
DOCS_CHECK -->|Yes| DOC_AGENT[Document Processor Agent<br/>GPT-4o-mini]
DOC_AGENT --> DOC_DOWNLOAD[Download from Storage<br/>- Shipping Documents<br/>- Damage Evidence]
DOC_DOWNLOAD --> DOC_EXTRACT[Extract Data via IXP<br/>- Document Understanding<br/>- Confidence Scores]
DOC_EXTRACT --> DOC_CONFIDENCE{Low Confidence<br/>Fields?}
DOC_CONFIDENCE -->|Yes| DOC_FLAG[Flag for Review]
DOC_CONFIDENCE -->|No| DOC_COMPLETE
DOC_FLAG --> DOC_COMPLETE[Store Extracted Data]
DOC_COMPLETE --> ASSESS_RISK
%% Risk Assessment
ASSESS_RISK[Assess Risk Node] --> RISK_FACTORS[Collect Risk Factors<br/>- High Amount<br/>- Claim Type<br/>- Low Confidence<br/>- Missing Docs<br/>- Policy Violations]
RISK_FACTORS --> RISK_CALC[Calculate Risk Score<br/>Weighted Algorithm]
RISK_CALC --> RISK_AGENT[Risk Assessor Agent<br/>GPT-4o-mini]
RISK_AGENT --> RISK_REASONING[Generate Risk Reasoning]
RISK_REASONING --> RISK_LEVEL{Risk Level?}
RISK_LEVEL -->|Low| RISK_LOW[Risk: Low]
RISK_LEVEL -->|Medium| RISK_MED[Risk: Medium]
RISK_LEVEL -->|High| RISK_HIGH[Risk: High]
RISK_LOW --> VALIDATE_POLICY
RISK_MED --> VALIDATE_POLICY
RISK_HIGH --> VALIDATE_POLICY
%% Policy Validation
VALIDATE_POLICY[Validate Policy Node] --> COMP_AGENT[Compliance Validator Agent<br/>GPT-4o-mini]
COMP_AGENT --> COMP_SEARCH[Search Knowledge Base<br/>- Claims Policies<br/>- Carrier Liability<br/>- Procedures]
COMP_SEARCH --> COMP_CHECK[Check Violations<br/>- Amount Limits<br/>- Carrier Liability<br/>- Required Docs]
COMP_CHECK --> COMP_RESULT{Violations<br/>Found?}
COMP_RESULT -->|Yes| COMP_VIOLATIONS[Record Violations]
COMP_RESULT -->|No| COMP_COMPLIANT[Mark Compliant]
COMP_VIOLATIONS --> EVALUATE_PROGRESS
COMP_COMPLIANT --> EVALUATE_PROGRESS
%% Progress Evaluation
EVALUATE_PROGRESS[Evaluate Progress Node] --> EVAL_CONFIDENCE{Confidence<br/>< Threshold?}
EVAL_CONFIDENCE -->|Yes| EVAL_ESCALATE[Flag for Review]
EVAL_CONFIDENCE -->|No| EVAL_RISK{Risk Level<br/>High?}
EVAL_RISK -->|Yes| EVAL_ESCALATE
EVAL_RISK -->|No| EVAL_VIOLATIONS{Policy<br/>Violations?}
EVAL_VIOLATIONS -->|Yes| EVAL_ESCALATE
EVAL_VIOLATIONS -->|No| EVAL_ERRORS{Critical<br/>Errors?}
EVAL_ERRORS -->|Yes| EVAL_ESCALATE
EVAL_ERRORS -->|No| EVAL_CONTINUE[Continue to Decision]
EVAL_ESCALATE --> ESCALATE_CHECK
EVAL_CONTINUE --> MAKE_DECISION
%% Human Escalation
ESCALATE_CHECK{Action Center<br/>Enabled?}
ESCALATE_CHECK -->|No| ESCALATE_SKIP[Skip Escalation]
ESCALATE_CHECK -->|Yes| ESCALATE_TO_HUMAN[Escalate to Human Node]
ESCALATE_SKIP --> MAKE_DECISION
ESCALATE_TO_HUMAN --> AC_CREATE[Create Action Center Task<br/>- Claim Details<br/>- Risk Factors<br/>- Extracted Data]
AC_CREATE --> AC_WAIT[Wait for Human Decision]
AC_WAIT --> AC_DECISION{Human<br/>Decision?}
AC_DECISION -->|Approved| AC_APPROVE[Set Decision: Approved]
AC_DECISION -->|Denied| AC_DENY[Set Decision: Denied]
AC_DECISION -->|Pending| AC_PENDING[Set Decision: Pending]
AC_APPROVE --> MAKE_DECISION
AC_DENY --> MAKE_DECISION
AC_PENDING --> MAKE_DECISION
%% Decision Making
MAKE_DECISION[Make Decision Node] --> DECISION_LLM[Decision Strategy<br/>GPT-4o]
DECISION_LLM --> DECISION_CONTEXT[Build Decision Context<br/>- Claim Data<br/>- Risk Assessment<br/>- Policy Compliance<br/>- Historical Context]
DECISION_CONTEXT --> DECISION_INVOKE[Invoke LLM Decision]
DECISION_INVOKE --> DECISION_PARSE[Parse Decision Response<br/>- Decision<br/>- Confidence<br/>- Reasoning]
DECISION_PARSE --> DECISION_VALIDATE{Valid<br/>Decision?}
DECISION_VALIDATE -->|No| DECISION_FALLBACK[Use Rule-Based Fallback]
DECISION_VALIDATE -->|Yes| DECISION_RESULT
DECISION_FALLBACK --> DECISION_RESULT[Store Decision]
DECISION_RESULT --> UPDATE_SYSTEMS
%% Update Systems
UPDATE_SYSTEMS[Update Systems Node] --> UPDATE_QUEUE{Transaction<br/>Key Exists?}
UPDATE_QUEUE -->|Yes| QUEUE_UPDATE[Update Queue Transaction<br/>- Status<br/>- Output Data<br/>- Error Messages]
UPDATE_QUEUE -->|No| QUEUE_SKIP[Skip Queue Update]
QUEUE_UPDATE --> UPDATE_DF
QUEUE_SKIP --> UPDATE_DF
UPDATE_DF[Update Data Fabric<br/>- Claim Status<br/>- Processing History<br/>- Decision Details] --> FINALIZE
%% Finalize Output
FINALIZE[Finalize Output Node] --> FINALIZE_MEMORY{Long-term<br/>Memory Enabled?}
FINALIZE_MEMORY -->|Yes| STORE_MEMORY[Store Outcome in Memory<br/>- Decision<br/>- Confidence<br/>- Reasoning<br/>- Outcome]
FINALIZE_MEMORY -->|No| BUILD_OUTPUT
STORE_MEMORY --> BUILD_OUTPUT
BUILD_OUTPUT[Build Output Response<br/>- Success Status<br/>- Decision<br/>- Confidence<br/>- Reasoning<br/>- Audit Trail] --> END_SUCCESS([End: Processing Complete])
%% Styling
classDef agentNode fill:#e1f5ff,stroke:#0288d1,stroke-width:2px
classDef decisionNode fill:#fff9c4,stroke:#f57f17,stroke-width:2px
classDef errorNode fill:#ffebee,stroke:#c62828,stroke-width:2px
classDef successNode fill:#e8f5e9,stroke:#2e7d32,stroke-width:2px
classDef toolNode fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px
class PLAN_AGENT,DOC_AGENT,RISK_AGENT,COMP_AGENT,DECISION_LLM agentNode
class INIT_VALIDATE,INIT_MEMORY,DOCS_CHECK,DOC_CONFIDENCE,RISK_LEVEL,COMP_RESULT,EVAL_CONFIDENCE,EVAL_RISK,EVAL_VIOLATIONS,EVAL_ERRORS,ESCALATE_CHECK,AC_DECISION,DECISION_VALIDATE,UPDATE_QUEUE,FINALIZE_MEMORY decisionNode
class ERROR_INIT,DF_ERROR,DOC_FLAG,COMP_VIOLATIONS,EVAL_ESCALATE errorNode
class END_SUCCESS,COMP_COMPLIANT,EVAL_CONTINUE successNode
class PLAN_TOOLS_EXEC,DF_QUERY,DOC_DOWNLOAD,DOC_EXTRACT,COMP_SEARCH,AC_CREATE,QUEUE_UPDATE,UPDATE_DF,STORE_MEMORY toolNode
UiPath products used (select up to 4 items)
UiPath Action Center
UiPath Automation Cloud™
UiPath Data Service
UiPath Document Understanding™
UiPath IXP
UiPath Orchestrator
UiPath Studio Web
Automation Applications
TMS
Integration with external technologies
Open AI
TO-BE workflow/architecture diagram (file size up to 4 MB)
Other resources
GitHub -
Additional Content
Backend Code added in Samples as PR - Added ltl-claims-agents in samples by SATMAN778 · Pull Request #255 · UiPath/uipath-langchain-python · GitHub
